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Neuroscience aims to understand the biological nature of individual traits

To date, most neuroimaging research has focused on group averages—
ignoring potentially meaningful individual differences

Recent findings suggest that individuals' functional connectomes,
recorded using fMRI imaging, are unique

Inter-individual differences of functional connectomes are very stable,
and can differentiate individuals >90% accuracy

Finn et al., 2015



Like a fingerprint, functional connectomes are characteristic to individuals
and predict behaviour

It remains unclear if we can achieve the same results with
electrophysiology...

Electrophysiology and hemodynamics capture different signals

Understanding inter-individual diversity of brain activity will help
researchers train better brain-behaviour models

Finn et al., 2015; Rosenberg et al., 2017, 2020






(a) datasets for fingerprinting

i) within-session
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We tested our ability to fingerprint
individuals with 3 challenges:

i- within-session fingerprinting (N=158)
ii- between-session fingerprinting (N=47)

iii- shortened fingerprinting (N=47)

da Silva Castanheira et al., 2021 s



We differentiated individuals from i) functional connectomes and ii) the
topography of spectral power
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differentiate individuals 5
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How easy is it to differentiate Jason?

person easy to differentiate ‘

person somewhere in the middle

person hard to differentiate
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Between session fingerprinting
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(b) differentiability does not decrease with time
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Brain-fingerprints of older adults

a | individual differentiation accuracy
is stable across age groups
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b | self-similarity is not related to age
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Whole brain

Our results indicate that spectral features are
characteristic to individuals (brain-
fingerprints)
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Is this also true of spectral brain-fingerprints?
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Brain-fingerprints & inter-individual differences

a | decoding of fluid intelligence performance from brain-fingerprints
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Individuals can be differentiated from large cohort based on both
connectome and spectral features

Individual differentiation is robust against environment and physiological
artifacts

We can differentiate individuals from brain-fingerprints recorded weeks
apart and from brief 30-second segments

Spectral brain-fingerprints predict inter-individual differences in fluid
intelligence

da Silva Castanheira et al., 2021






Inter-individual differences in neurophysiology are robustly estimated
from young and older adults

Little is known about how disease may affect inter-individual differences

Some preliminary findings suggest that neurodegenerative diseases, like
Parkinson’s disease (PD), may increase within-session variability of brain
activity

Does PD destabilize inter-individual differences?

Troisi Lopez et al., 2023; Sorrentino et al., 2021



We assessed spectral brain-fingerprinting using the QPN and Prevent-AD
datasets

We computed the resting-state brain-fingerprints from 79 patients with
Parkinson’s disease and 54 healthy age-matched controls

controls vs controls Parkinson vs Parkinson Parkinson vs controls
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a | inter-individual differentiation
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Patients with PD are harder to differentiate
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arrhythmic rhythmic
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c | self-similarity decreases faster with gap duration between brain-fingerprint datasets in Parkinson's disease
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The most differentiable features in PD

The most salient features for individual differentiation differ between
patients and healthy controls

a | PD patients are better differentiated from somatomotor regions
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Decoding of disease staging

a | decoding of disease staging from rhythmic spectra

b | disease staging is related to the most
earlier (H&Y <2) vs salient features of the PD brain-fingerprint
later (H&Y = 2) disease stage
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The organization of the PD brain-fingerprint:

Related to:

P-AD sample / decoding of disease staging

sensory cortical areas of
the functional gradient

Norepinephrine, &
serotonin cannabinoid &
mu-opioid
neurochemical systems
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Brain oscillations are characteristic to individuals, particularly fast
oscillations (i.e., beta band)

Inter-individual differences in brain oscillations predict inter-individual
differences in fluid intelligence

Inter-individual differences in brain oscillations change across the
lifespan and throughout disease in meaningful ways

Population differences in brain-fingerprints may explain challenges in
brain-behaviour transfer learning
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