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Electromagnetic Brain imaging - Reconstruction of 
neural oscillations from non-invasive recordings 
(MEG & EEG) of brain’s electrophysiological activity

Data y(t)
Source x(t)
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Bayesian Reconstruction of Brain Networks

§Past work

• Formulation of the source reconstruction 
problem as sparse regression problem

‒ Robust sparse signal estimation

‒ Independent Noise estimates available
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Electromagnetic Brain Imaging as Sparse 
Linear Regression
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Type I vs Type II Estimation
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Bayesian Reconstruction of Brain Networks

§Recent work

• Formulation of the source reconstruction 
problem as sparse regression problem

‒ Sparse signal estimation

‒ Simultaneous Noise estimation

• Novel and robust Bayesian algorithms for joint 
estimation of signal and noise
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Champagne Algorithm – Joint Signal and Noise Learning

Our contributions: The Champagne Algorithm - Joint 
Estimation of regression parameters and noise distributions 
with diagonal and full structure covariance with Type II loss.
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Leveraging Majorization-Minimization Framework for 
Joint Signal and Noise Learning
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Majorization-Minimization Framework
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Extensions to Full-rank and Spatiotemporal Noise Models
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Full Structure Noise Estimation:
Geodesic Convexity on Riemannian Manifolds

14

Reconstructing Auditory Cortices
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Bayesian extensions to Beamformers
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Sparse Bayesian Learning Regularization

Model Covariance

SBL Beamformer

• Alternative to Statistically Regularized Beamformers
• Robust to Source Correlations
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Time-frequency Extensions
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Robust reconstruction of Task-induced Oscillations

Finger movement

Picture Naming
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Reconstruction Algorithms - Summary

• Robust reconstruction of spontaneous and task-
induced frequency specific brain oscillations can be 
achieved with sparse Bayesian learning algorithms 
that include joint signal and noise estimation

20



[ADD PRESENTATION TITLE: INSERT TAB > HEADER & 
FOOTER > NOTES AND HANDOUTS]

11/1/236

Outline

1. Novel reconstruction algorithms for 
Electromagnetic Brain Imaging

2. Resting-state brain oscillations in Alzheimer’s 
disease (AD)

3. Neurophysiological trajectories in AD progression 
using event-based modeling (EBM)

4. Spectral Graph Modeling (SGM) of neural 
oscillations in AD

21

Frequency specific abnormal long-range neural 
synchrony in Alzheimer’s disease

Information similar to that obtained from two 
radionucleotide PET imaging
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Abnormal local-neural synchrony in AD
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Exploring temporal dynamics of resting-state in AD

24



[ADD PRESENTATION TITLE: INSERT TAB > HEADER & 
FOOTER > NOTES AND HANDOUTS]

11/1/237

Dynamic features are abnormal in AD
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Time-varying network dynamics predict AD
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Summary

• Both local and long-range neural synchrony is 
disrupted in dementia

• Time-varying network dynamic abnormalities are 
important features of AD
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Elife, under public review
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Atrophy-Cognition Event-based Modeling (EBM)
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Event Based Modeling
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Atrophy-Cognition Event-based Modeling (EBM)
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Electrophysiological Trajectories
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Long-range Synchrony-Atrophy-Cognition EBM
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Summary

• Long-range neural synchrony in the alpha and beta 
bands represent the earliest manifestation of 
Alzheimer’s disease progression
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Brain structure and structural connectivity

Tractography from 
diffusion MRI

Parcellation 
template

Brain structure network

Structural connectivity matrix

Adjacency distance matrix
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How do we integrate brain structure with 
functional imaging of neural oscillations?

• Spectral Graph Modeling 

= 𝑓( ; 𝜽)
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Spectral graph model (SGM) 

Figure 1: SGM models excitatory and inhibitory neuronal subpopulation signals that influence the long-range
excitatory signals. The long-range signals are connected to each other via the structural connectome, and these
signals transmit with a fixed conduction speed. SGM provides a closed-form solution in the frequency domain.
This is compared to the frequency spectra obtained from MEG for inferring the SGM model parameters.
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Spectral Graph Modeling Publications
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Machine Learning for Bayesian Inference of SGM
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SGM inferred parameters in AD
* ***

*** ***
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Discriminability of AD from SGM parameters

* ***

*** ***
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Association of SGM parameters with cognitive decline
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Increase in 𝜏! is associated with more cognitive decline
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Summary

1. Robustness of novel Bayesian algorithms for 
Electromagnetic Brain Imaging (EBI)

2. Evidence for abnormal neural synchrony and 
network dynamics in AD

3. Neural synchrony is an early manifestation in AD

4. Spectral Graph Modeling (SGM) as a unifying 
framework for understanding electromagnetic 
brain imaging data
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Credits – Incredible team of past and 
current members of the UCSF-BIL!
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Questions or Comments?
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