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Speech 1s a special form of communication
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Overview of speech production
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Speech articulators:

muscle groups responsible
for shaping the vocal-tract
(jaws, lips, tongue, larynx)

Phonemes: smallest
perceptually distinct
sounds that form a
language

Speech is multimodal:
Words, sounds, and facial
movements/expressions
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Stroke and ALS cause loss of speech

Motor cortex
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A BCI could bypass diseased motor
pathways to restore speech
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“mbodied communication is multimodal

Words and phrases
Sounds : pitch and intonation
Orofacial movements and expressions

UCSF BRAVO trial:

Response decoded from brain activity

Demonstration in our
first clinical trial
participant (BRAVO1)
was limited to 50 words
text communication




A multimodal ECoG speech BCI
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Sentence sets used for training and testing
decoders

1024-word-General
- Over 1,000 English words which can
cover over 85% of conversational
English
- Testing was always on unseen
sentences

What happened to the baby?

N | f
529-phrase-AAC eural features

- 529 phrases relevant for daily life and
caregiving

Power (Z2)

50-phrase-AAC
- A subset of 50 phrases from the prior
set

HGA (70-150 Hz) | LFS (1-100 Hz)

Time (s)




A CTC model to decode phonemes and

words

a Nep(al Bidirectional CTC beam search Phone-to-text Language
activity RNN conversion modelling

Q,w,e,4,0,w,0,2,9...
Wear was...
Where was...
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« Recurrent neural network consumes neural activity (HGA: 70-150 Hz, LFS: 1-100 Hz)
« RNN outputs the probability of each phoneme at down-sampled timesteps (emissions)
» Beam search: finds most likely sequence of phonemes and words based on the emissions

Where was...
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High-performance text decoding

Target sentence Decoded sentence Word error rate (%)
You should have let me do the talking You should have let me do the talking 0

| think | need a little air | think | need a little air 0

Do you want to get some coffee Do you want to get some coffee 0

What do you want from us What do you want for us 17

You have no right to keep us here You have no right to be out here 25

Do you mind me talking about your stuff Do you make it out to yourself 75




High-performance text decoding with 1024-

word-General set
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Stable NATO code-word classification

Stable classification
accuracy without re-
training for ~80 days
on 26 NATO code-
words
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Intelligible speech synthesis
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Intelligible speech synthesis

Decoded speech
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Intelligible speech synthesis
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* Volunteers listened to the synthesized audio and transcribed what they heard
» Transcriptions were used to compute WERs and CERs
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Facial-avatar control

a Bidirectional RNN Articulatory-gesture Decoded articulatory gestures Avatar animation
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Facial-avatar control (expressions)
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Demonstration of all three modalities

What neural
signals are our
models picking
up on?




To what extent do fine-grain articulatory
representations persist in people with paralysis?

In healthy speakers, speech articulatory representations are
arranged somatotopically
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Phonemes can be grouped based on their

place of articulation

Phoneme place of articulation
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Front tongu
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Somatotopy persists atter 18 years of paralysis

[ — f — Vocalic
Al Selectivity of electrode 1 to _tFm”‘ 2
& — ‘b phoneme N ;l?:le 2
. ! Hand
% d  Electrodes have
L. r i : selectivity for
J& n ; groups of
=k g phonemes
& g articulated at some
=1 location
[ 0 «  Somatotopic
I : L organization
Electrodes g parallels that of
B kvtiii?c'.F M um | [ : healthy speakers
cktone ] 1
Front tongue o 5

Density




Comments from participant
= Hearing a voice similar to your own is emotional. Being able to
have the ability to speak aloud is very important.

= My moonshot was to become a counselor and use the system to
talk to my clients. | think the avatar would make them more at

ease.

=« Please make the device wireless!
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Summary

Rapid and high-performance text-decoding

First intelligible and personalized speech synthesis with
someone who cannot speak

First demonstration of real-time avatar-control

Detailed articulatory representations persist after paralysis
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