AI in Epilepsy: 2024
Source Localization

Manish N. Shah, MD, FAANS
William J. Devane Distinguished Professorship
Associate Professor, Pediatric Neurosurgery
Director of Pediatric Spasticity and Epilepsy Surgery
Director, Texas Comprehensive Spasticity Center
McGovern Medical School at UTHealth Houston
No Financial disclosures

• Funding:
 • NIH R01 NS126437 (Co-PI)
Manish N. Shah, MD, FAANS
• A.B. Physics - Princeton University
• M.D. - Vanderbilt University
• Neurosurgery Residency, Washington University in St. Louis
• T.S. Park Pediatric Neurosurgery Fellowship, St. Louis Children’s Hospital
• Faculty @ UTHouston since 2014
• NIH-funded neuroimaging laboratory
Role of Epilepsy Surgery

• 1/900 kids have medically refractory epilepsy; they wait until Adult epilepsy conference to be presented?

• Goals of presurgical evaluation:
 • Is patient a “good candidate” for resection?
 • localize or at least lateralize the Epileptogenic Zone (EZ)
 • Identify functional areas and proximity to EZ
 • determine need/location of invasive monitoring (iEEG, SEEG)

• Goals of resection:
 • Seizure freedom or reduction in seizure burden
 • Spare eloquent cortex as much as possible
 • Disrupt/reverse developmental arrest or regression, to improve long-term developmental outcome
Pediatric Epileptologists

Jeremy Lankford, MD

Michael Watkins, MD
PhD

Shelley Varnado, MD

Gretchen Von Allmen, MD

Indira Kommuru, MD
Epilepsy is a disorder of Brain Networks

Resting state signal latency predicts laterality in pediatric medically refractory temporal lobe epilepsy

Manish N. Shah¹ • Anish Mitra³ • Manu S. Goyal³ • Abraham Z. Snyder³,⁴ • Jing Zhang¹ • Joshua S. Shimony³ • David D. Limbrick² • Marcus E. Raichle³,⁴,⁵,⁶ • Matthew D. Smyth²
Role of Resting State MRI Temporal Latency in Refractory Pediatric Extratemporal Epilepsy Lateralization

Manish N. Shah, MD,1* Ryan D. Nguyen, BS,1 Ludovic P. Pao, BS,1 Liang Zhu, PhD,1
Travis S. Crevecoeur, BS,3 Anish Mitra, PhD,4 and Matthew D. Smyth, MD3

FIGURE 1: Two exemplary lesionectomy case preoperative latency analysis images qualitatively compared with postoperative structural MRI. Patient #8 underwent a left superior frontal lesion resection. Patient #31 underwent a left frontal polar resection. Type I error $\alpha_c = 0.001$ cutoff was used in both patient latency images. Blue voxels are significantly early and red voxels are significantly late.
A comparison of machine learning classifiers for pediatric epilepsy using resting-state functional MRI latency data

RYAN D. NGUYEN¹, MATTHEW D. SMITH², LIANG ZHU³, LUDOVIC P. PAO¹, SHANNON K. SWISHER¹, EMMETT H. KENNADY⁴, ANISH MITRA⁴, RAJAN P. PATEL⁵, JEREMY E. LANKFORD⁶, GRETCHEN VON ALLMEN⁷, MICHAEL W. WATKINS⁸, MICHAEL E. FUNKE⁹ and MANISH N. SHAH¹

Receiver operating characteristic curves

- XGBoost: AUC: 0.79
- SVM: AUC: 0.66
- Random forest: AUC: 0.73
GIGO (XKCD)

This is your machine learning system?

Yup! You pour the data into this big pile of linear algebra, then collect the answers on the other side.

What if the answers are wrong?

Just stir the pile until they start looking right.
Source Localization with Brainstorm
Analysis Overview

Data Importing
1) Import subject anatomy
2) Align MEG data with anatomy
3) Extract epileptic MEG activity

Source Localization
1) Generate head model from subject anatomy
2) Compute sources
3) Model sources as dipoles
Data Import: *Subject Anatomy*

- Load Freesurfer segmentations into Brainstorm.
Data Import: *MEG Data*

- Import & anatomically co-register MEG data.
 - *Sensor position (A)*
 - *Recordings (B)*
 - *Epileptic spike annotations (C)*
 - *Use first 10s for noise estimation (D)*
Source Localization: *Head Modeling*

- Approximate brain, skull, and scalp as series of overlapping spheres. *(A)*

- Approximate source space as 3D grid of vectors dispersed throughout brain *(B)*
Source Localization: *Source Computation & Dipole Production*

- Evaluate source space for activity during epileptic events.
- Estimate dipoles that best fit the source space during epileptic events.
Final Product (spatial and temporal clustering)
Future Directions

• More Sophisticated Clustering
 • AI
• More Data
• More Outcomes
Thanks ANT CONGRES

• SHAH LAB!!!
 • Arya Shetty
 • Yash Vakilna
 • Jonathan Hendricks
 • Ryan Nguyen
 • Shannon Swisher
 • Emmett Kennady
 • Ludovic Pao
 • Alberto Rosas
 • Trey Sickler

• Sam Lhatoo and John Mosher
• Richard Leahy and Sylvain Baillet
• McGovern Pediatric Neurosurgery
 • David Sandberg, MD
 • Stephen Fletcher, DO
 • Bangning Yu, MD PhD
• Alisse Pratt, Anne Crocker, William Radcliffe
• Vianey + Reyna + Paula
• PEMU Staff and EEG Technologists