11587
Comment:
|
11652
|
Deletions are marked like this. | Additions are marked like this. |
Line 2: | Line 2: |
A roadmap for the future developments of Brainstorm. == Next six months == ==== Pre-processing ==== * Extend processing of continuous CTF files to all file formats * Continuous viewer: Many small improvements to the usability of its interface * Improve detection and correction of artifacts with SSP * Co-registration of several MEG runs on one single head position * Make all the main operations available in the pipeline editor ==== File formats ==== * MRI: MINC * EEG: Stellate * EEG: Brain Products / !BrainAmp * Read and display NIRS recordings * CTF SAM Beamformer results |
A roadmap to the future developments of Brainstorm. == Current topics == |
Line 20: | Line 6: |
* Implementation of methods developed at USC <<BR>><<BR>> == Details of those features == |
* Integration of different metrics to study the brain connectivity: <<BR>>Correlation, coherence, Granger causality, phase locking value * Development of new ways to represent the connectivity between sensors or brain regions ==== EEG / epilepsy / intra-cranial recordings ==== * Editing the position of intracranial electrodes in the MRI viewer ==== Source modeling ==== * Computation of equivalent current dipoles * Beamformers ==== Large scale analysis ==== * Parallel processing: Reduce the computation times using the parallel processing toolbox * Distributed processing: Integrate tools for sending Brainstorm processes on computation clusters <<BR>><<BR>><<BR>> == Recordings == * RAW file viewer: * Pre-load next page of recordings * Documentation: Add definition of bad segments * 2DLayout: Doesn't work when changing page => need refresh of !GlobalData.Preferences.!TopoLayoutOptions.!TimeWindow * EEG reference/storage: * Intracranial electrodes: Define in the MRI viewer * Bad channels that can be specified at the program level (for sites that have permanently bad channels) => AS Dubarry * RAW processing: * Make it work for all the file formats (at least bandpass filter + sin removal) * Events: advanced process for recombining. Example: http://www.erpinfo.org/erplab/erplab-documentation/manual/Binlister.html * Colormaps: * Create a colormap similar to MNE, where extrema are bright * Import data: * Save properties "baseline" and "resample" at the level of the protocol (to re-use for all the files) * NIRS: * Add new data type * Display of sensors by pairs oxy/deoxy (red/blue), overlaid * Images of amplitude: [sensor x time], [trial x time], scout: [trial x time] * Can be done with Matrix > View as image: extract cluster, concatenate for all trials * 2D Layout for multiple conditions == Display == * Nicer 2D plots, standardized * Copy figures to clipboard (with the screencapture function) == Connectivity == * Tutorial coherence [1xN] * t-tests on connectivity measures * Graph view: * Fixed scales for intensity sliders * Fix zoom in one region * Text bigger * Too much data in appdata * Other metrics: * Coherence by bands: bst_coherence_band_welch.m * Granger by bands: bst_granger_band.m * Inter-trial coherence * Work on progress bars == Processes == * Time-frequency: * Frequency bands: extended syntax (ex: [2 3 4], 10:5:90, ...) * How to combine 3 orientations for unconstrained sources * Display logs as negative * 2D Layout in spectrum * Make much faster and more memory efficient (C functions coded by Matti ?) * Smooth display of TF/PAC maps (option) * TF scouts: should display average of TF maps * Bandpass: Show warning when using inappropriate high-pass filter (precision too high) * Artifact detection: * Detection of bad segments in the RAW files * Artifact rejection like SPM: if bad in 20%, bad everywhere * Test difference between adjacent samples * Distributed processing: Brainstorm that can run without Java |
Line 26: | Line 78: |
* Make SSP projections dynamic, and keep the full list instead of always them combining them * Take the bad channels in account in the application of the SSP * Refresh display after changing the list of bad channels (imported files + raw) so the SSP are applied correctly * When processing multiple files: waitbar is all messed up * Tune parameters for the automatic detection of heartbeats and eye blinks * Write documentation * RAW file viewer: * Buttons for changing scales (time + amplitude) * Add tooltips to all the buttons / shortcuts * Adding events using configurable shortcuts (CTRL+number) * If "Use SSP " option is selected, automatically select "Remove baseline" and "CTF compensations" * Documentation: Add definition of bad segments * RAW processing: * Process correctly CTF files saved without the 3rd order grad correction (apply correction before) * Allow to overwrite RAW files (but with a HUGE warning) * Update file definition + events if time changes (ex: resample) * Make it work for the file formats * Homogenize a selection of several subjects/conditions * Popup menu when more than one study selected * Creation of a common channel file (match channels by names, not by order) * Register MEG runs (recompute fields for a different set of sensors, MEGCoregister from old brainstorm) * Complete processing pipeline: * Import + pre-process * Sources / head model / noise covariance * Project sources * Do not generate errors, stay silent and generate a report log that is shown at the end * bst_selections: * Add user defined combinations of sensors (eg. "double banana" for EEG) * Use this to produce "inversed polarity" displayes too (useful in EEG) * Standard setups for al the EEG caps * Visualize Beamformer results (contact Zainab Fatima): * Read CTF SAM .svl * Create new file type in the database * Display as layers in the MRI viewer * ICBM brain * MINC MRI reader: EMMA, NIAK (Pierre Bellec), HDF5 directly read in Matlab * ICBM average surfaces + atlas * Using CIVET pipeline for extracting surfaces == Other new features == * Intracranial electrodes: * Display in the MRI viewer * Different data type * Display time series * Stat on scouts / clusters / "matrix" |
* Display warning if changing the !ChannelFlag while there is a Projector applied * Show where the attenuation is projected:<<BR>>(sum(IK,2)-sum(SSP(k,:)*IK,2)./sum(IK,2) |
Line 73: | Line 82: |
* By subject AND condition * Command-line Brainstorm: for working on clusters (make sure that there are no interface interruptions) * GUI: Save configuration of windows (per protocol) |
* Save standard deviation * Display standard deviation as a halo around the time series * Co-registration of MEG runs: * SSP: Group projectors coming from different files * Finish validation of the method * Apply to continuous recordings for correcting head movements * Current Source Density (CSD) => Ghislaine<<BR>>http://psychophysiology.cpmc.columbia.edu/software/CSDtoolbox/index.html * Other processes: * Detrending * Moving average * Max * Median * Significance test (Dimitrios, Leo) * Spatial smoothing: check / document parameters * Contact sheets & movies: use average of time windows instead of single instants, for each picture. * Optical flow == Database == |
Line 78: | Line 101: |
* Sources on surface: Display peak regions over time (time = color) => A.Gramfort * Images of amplitude: [sensor x time], [trial x time], scout: [trial x time] (similaire to erpimage in eeglab) * Simulation: synthesize pseudo data-files from a cortex patch (duration, amplitude, noise) |
* Group matrix files => allow to process matrix files by trial types |
Line 85: | Line 105: |
* Screen captures: save straight to the database * Rename multiple files |
|
Line 86: | Line 110: |
* Stenroos 2014 paper: Include the following methods * Inner and outer skull surfaces generator from !FieldTrip (needs SPM, probably not so different from BST) * Nolte corrected-sphere model (good model re:Alex) * Fast BEM models * Dipole fitting * Visualize Beamformer results: * Read CTF SAM .svl * Display as layers in the MRI viewer |
|
Line 88: | Line 120: |
* Define as default * Check all the processes |
|
Line 91: | Line 121: |
* Stat and connectivity: what to do? (re-send email John+Sylvain) | |
Line 97: | Line 128: |
* Optimize: grid_interp_mri * Magnetic extrapolation: * Do the same thing with EEG * Optimize bst_extrapm.m, add waitbar * Use the noise covariance from the database instead of recomputing it * Project sources: * Adapt smooth factor to the number of vertices * Number of neighbors to consider = average number of neighbors in the target mesh. * Compute by small time blocks |
* Magnetic extrapolation: Do the same thing with EEG |
Line 107: | Line 130: |
* Storage of multiple noise covariance matrices (just like the head models) * Always save as full, then at inversion time, we can decide between full, heteroskedastic (diagonal) or homoskedastic (i.i.d, scalar) * Problem of having inividual trials + averages in the condition => Display warning or not? |
|
Line 109: | Line 135: |
* Sources on surface: Display peak regions over time (time = color) => A.Gramfort * Simulation: synthesize pseudo data-files from a cortex patch (duration, amplitude, noise) * Calculate !ImagingKernel * Gain for a scout * EEG Source modeling: Manage references and bipolar montages properly (maybe not necessary) * MEG source modeling: Do reconstruction only for a subset of sensors for estimating dipoles? * Processes compute head model and sources: Additional option to set the file comment |
|
Line 111: | Line 143: |
* BEM: * Fix the bumps at the back of the head * Surface edges: same color as the surface when color was changed * Improve ICP registration headpoints / scalp (chanfrein, multi-resolution, see with C Grova...) * Use BrainVISA / FreeSurfer labeling automatically when importing cortex surfaces * MRI import: auto-reorientation of MRI after selected NAS / LPA / RPA. * Major bug when importing surfaces for an MRI that was re-oriented manually * Finalize Brodmann scouts * Remove NCS/Talairach coordinate system, or fix it => Sylvain, Karim ND * Clustering cortex: Dimitrios, David, Yu-Teng == Processes == * Other processes: * Moving average * Remove linear trend * Power line removal * Bug: gradnorm crashes with bad channels * Spatial smoothing: check / document parameters * Sinusoid removal: fix new function * Time-frequency: * Write script for timefreq tutorial * Make much faster and more memory efficient (C functions coded by Matti ?) * Power spectrum: computation (FFT/welch, or average of TF) + display(f/Power, 2DLayout) * Display stat computed on time-frequency data * Display TF maps separately for the two gradiometers (if not: overlap) * Source reconstruction by frequency bands * Scouts on surface / time-freq * Process selection interface: * Do not reload the list a each display, but once when starting Brainstorm * Popup menus: Add a "Process" menu with all the available processes * Bug when redimensioning window (with more than one process) * isAvgRef: warning quand process necessite des donnees en AVG REF en entree * Save "freqband" option when edited from custom processes |
* Scouts:<<BR>> * Display edges in the middle of the faces instead of the vertices * Project scouts betweens subjects and between hemispheres * Display scouts in a tree: hemisphere, region, subregion * Downsample to atlas: allow on timefreq/connect files * Sort scouts by region in process options * Generate mixed density surfaces * Import / registration: * Major bug when importing surfaces for an MRI that was re-oriented manually * Use mid-gray instead of pial surface? |
Line 151: | Line 160: |
* http://www.adscience.fr/uploads/ckfiles/files/html_files/StatEL/statel_wilcoxon.htm * http://www.mathworks.fr/fr/help/stats/signrank.html * Less powerful than t-tests |
|
Line 157: | Line 169: |
== Display == * OpenGL options: {none, software, hardware} * Colormap: Set colormap max with right-click + move on the colorbar * Bug: Mixing 2 views MRI/3d, white cuts appear after !SetCurrentFigure * Bug: Scout without overlay, adapt scale for each graph when "Uniformize" option is unchecked (mixing sources + zscores) * Waitbars: * Replace old waitbars with java ones * Add a "Cancel" button on waitbars when the bounds are defined (ie. when bst controls the process) * Contact sheets & movies: use average of time windows instead of single instants, for each picture. == I/O == |
* t-test on volume sources * Paired t-test on unconstrained sources: (convert to flat + Z-score) => !AnneSo * Question of Gaussianity of the samples: take a subset of samples + Kolmogorov-Smirnov / Shapiro-Wilk test * http://fr.wikipedia.org/wiki/Test_de_Shapiro-Wilk * http://stats.stackexchange.com/questions/362/what-is-the-difference-between-the-shapiro-wilk-test-of-normality-and-the-kolmog * http://www.mathworks.fr/fr/help/symbolic/mupad_ug/perform-shapiro-wilk-test.html * http://www.mathworks.fr/fr/help/symbolic/mupad_ref/stats-swgoft.html * http://stackoverflow.com/questions/14383115/shapiro-wilk-test-in-matlab * Create icons for Stat/PAC, Stat/Sprectrum, etc. * One sample t-test across subjects == Input / output == |
Line 170: | Line 182: |
* Stellate * !BrainVision / !BrainAmp: Get functions from EEGLAB * Nihon Kohden * EDF+ |
|
Line 175: | Line 183: |
* NEUROFILE = COHERENCE EEG/video !LongTerm Monitoring => Manfred Spueler | |
Line 177: | Line 184: |
* Other file formats * MEG160 (KIT) * CTF: Read STIM channel and generate !MarkerFile * EEGLAB: Apply ICA matrices, get number of trials for AVG files * !FieldTrip structures: In / Out * Gzipped Nifti (new BrainVISA standard) * Output for all the channel file formats * Analyze / Nifti:<<BR>> * Fix output function (output MRIs cannot be imported in SPM) * Use correctly field "orient" to align automatically MRI when importing * Define scouts from SPM / Analyze 3D masks * Files > 2Gb: display warnings == Geeky programming details == * Double-click doesn't work well on some Linux workstations * Bug: Menu "Use default EEG cap" doesn't work for a multiple selection (setting the same EEG cap for several subjects) * Bug node selection: click on sources > TF: select node-source, not node-condition * Bug tree_dependencies: sources files, reprojected on default anatomy; If based on data files that are bad trials, they should be ignored by tree_dependencies, and they are not * bst_warp and channel_project: Use tess_parametrize_new instead of tess_parametrize * Testing functions: test_ctf "folder" / test_neuromag "folder" / test "folder" => Alex * Bug in_bst_data_multi: If trials have different sizes, output is random (the one of the first file)... * sLORETA: Values are now multiplied by 1e12 at loading for display => has do to be done in another way * Shared kernels: do the "get bad channels" operation in a different way (reading all the files is too slow) * Write shepards.m with new algorithm for nearest neighbors * Use Matlab Coder to compile / optimize some processes * Optimize calls to bst_get, now study and subject have necessarily the same folder name |
* !FieldTrip structures: In / Out * BCI2000 Input (via EEGLAB plugin) * Export TF maps to SPM / volumes * EEGLAB import: Selection of conditions in script mode |
Line 205: | Line 190: |
* Version with big fonts for live demos | |
Line 207: | Line 191: |
* List of all the shortcuts * Send email to registered users to anounce major improvements * Script tutorials: * Update them to reflect all the recent changes * Script for the time-frequency computation |
|
Line 213: | Line 192: |
* Estimate time to complete each tutorial | * Processes: Describe all the processes |
Line 215: | Line 194: |
* Anatomy: Segmentation with !FreeSurfer | |
Line 218: | Line 196: |
* Coordinate sytems: How to convert between the different coordinates systems in scripts | |
Line 221: | Line 198: |
* Scouts: Atlases of Tzourio-Mazoyer and Brodman * Processes: Describe all the processes * Processes: How to write your own processes (user folder for processes) * Processes: Processing RAW files |
|
Line 226: | Line 199: |
* Advanced tutorials: * MNE sample dataset * EEG (How to import an EEG cap) * MRI segmentation with !FreeSurfer => David Wheland * How to make and compress a movie (Brainstorm + !VirtualDub + XVid) * Display the "What's new" page after downloading new version of brainstorm * Ask users to send their channel files, align on Colin, distribute |
* Temporary folder == Current bugs == * Import anatomy folder menu freezes Matlab on MacOS 10.9.3 / Matlab 2014a * Import anatomy folder menu crashes on MacOSX 10.8.5 / Matlab 2013b * Record tab: Text of epoch number is too big on MacOS * Menu "Use default EEG cap" doesn't work for a multiple selection (setting the same EEG cap for several subjects) * in_bst_data_multi: If trials have different sizes, output is random (the one of the first file) * tree_dependencies: sources files, reprojected on default anatomy; If based on data files that are bad trials, they should be ignored by tree_dependencies, and they are not * Image viewer has some bugs on some systems * Screen capture for reports never works: Find another solution * Screen capture when there is a fading effect in the window manager: captures the window * Close figure with coherence results should hide the "frequency" slider * Problems growing scouts on merged surfaces (Emily) * Edit scout in MRI: small modifications cause huge increase of the scout size == Geeky programming details == * Interpolations: Use scatteredInterpolant, griddedInterpolant, triangulation.nearestNeighbor (Matlab 2014b) * Use Matlab Coder to optimize some processes: Bandpass filter, sinusoid removal * Hide Java panels instead of deleting them * mri2scs: convert arguments to meters * bst_warp and channel_project: Use tess_parametrize_new instead of tess_parametrize * Shared kernels: do the "get bad channels" operation in a different way (reading all the files is too slow) * Optimize bst_get: * Now study and subject have necessarily the same folder name * Replace big switch with separate functions * Progress bar: * Add different levels (to handle sub-processes) * Make work correctly with RAW on resting tutorial * Uniformize calls in bst_process/Run * Add a "Cancel" button * Line smoothing / anti-aliasing (time series figures) * Fix all the 'todo' blocks in the code * Replace handle "0" with bst_get('groot') |
What's next
A roadmap to the future developments of Brainstorm.
Current topics
Functionnal connectivity
Integration of different metrics to study the brain connectivity:
Correlation, coherence, Granger causality, phase locking value- Development of new ways to represent the connectivity between sensors or brain regions
EEG / epilepsy / intra-cranial recordings
- Editing the position of intracranial electrodes in the MRI viewer
Source modeling
- Computation of equivalent current dipoles
- Beamformers
Large scale analysis
- Parallel processing: Reduce the computation times using the parallel processing toolbox
- Distributed processing: Integrate tools for sending Brainstorm processes on computation clusters
Recordings
- RAW file viewer:
- Pre-load next page of recordings
- Documentation: Add definition of bad segments
2DLayout: Doesn't work when changing page => need refresh of GlobalData.Preferences.TopoLayoutOptions.TimeWindow
- EEG reference/storage:
- Intracranial electrodes: Define in the MRI viewer
Bad channels that can be specified at the program level (for sites that have permanently bad channels) => AS Dubarry
- RAW processing:
- Make it work for all the file formats (at least bandpass filter + sin removal)
Events: advanced process for recombining. Example: http://www.erpinfo.org/erplab/erplab-documentation/manual/Binlister.html
- Colormaps:
- Create a colormap similar to MNE, where extrema are bright
- Import data:
- Save properties "baseline" and "resample" at the level of the protocol (to re-use for all the files)
- NIRS:
- Add new data type
- Display of sensors by pairs oxy/deoxy (red/blue), overlaid
- Images of amplitude: [sensor x time], [trial x time], scout: [trial x time]
Can be done with Matrix > View as image: extract cluster, concatenate for all trials
- 2D Layout for multiple conditions
Display
- Nicer 2D plots, standardized
- Copy figures to clipboard (with the screencapture function)
Connectivity
- Tutorial coherence [1xN]
- t-tests on connectivity measures
- Graph view:
- Fixed scales for intensity sliders
- Fix zoom in one region
- Text bigger
- Too much data in appdata
- Other metrics:
- Coherence by bands: bst_coherence_band_welch.m
- Granger by bands: bst_granger_band.m
- Inter-trial coherence
- Work on progress bars
Processes
- Time-frequency:
- Frequency bands: extended syntax (ex: [2 3 4], 10:5:90, ...)
- How to combine 3 orientations for unconstrained sources
- Display logs as negative
- 2D Layout in spectrum
- Make much faster and more memory efficient (C functions coded by Matti ?)
- Smooth display of TF/PAC maps (option)
- TF scouts: should display average of TF maps
- Bandpass: Show warning when using inappropriate high-pass filter (precision too high)
- Artifact detection:
- Detection of bad segments in the RAW files
- Artifact rejection like SPM: if bad in 20%, bad everywhere
- Test difference between adjacent samples
- Distributed processing: Brainstorm that can run without Java
- SSP:
Display warning if changing the ChannelFlag while there is a Projector applied
Show where the attenuation is projected:
(sum(IK,2)-sum(SSP(k,:)*IK,2)./sum(IK,2)
- Average:
- Remember how many trials were used per channel
- Save standard deviation
- Display standard deviation as a halo around the time series
- Co-registration of MEG runs:
- SSP: Group projectors coming from different files
- Finish validation of the method
- Apply to continuous recordings for correcting head movements
Current Source Density (CSD) => Ghislaine
http://psychophysiology.cpmc.columbia.edu/software/CSDtoolbox/index.html- Other processes:
- Detrending
- Moving average
- Max
- Median
- Significance test (Dimitrios, Leo)
- Spatial smoothing: check / document parameters
Contact sheets & movies: use average of time windows instead of single instants, for each picture.
- Optical flow
Database
- MEG protocols: More flexible organization of the database; sub-conditions to allow different runs X different conditions.
Group matrix files => allow to process matrix files by trial types
- Add notes in the folders (text files, visible as nodes in the tree)
- Screen captures: save straight to the database
- Rename multiple files
Source modeling
- Stenroos 2014 paper: Include the following methods
Inner and outer skull surfaces generator from FieldTrip (needs SPM, probably not so different from BST)
- Nolte corrected-sphere model (good model re:Alex)
- Fast BEM models
- Dipole fitting
- Visualize Beamformer results:
- Read CTF SAM .svl
- Display as layers in the MRI viewer
- Unconstrained sources:
- Compute unconstrained and then project on the normal ?
- Difference and stat should be: norm(A) - norm(B)
- Stat and connectivity: what to do? (re-send email John+Sylvain)
- Overlapping spheres: improve the estimation of the spheres for the frontal lobes
- Volume grid:
- Scouts 3D
- Test volume sources with all the subsequent processes (timefreq, stat...)
- Optimize: 3D display (better that 9x9 cubes)
- Optimize: vol_dilate (with 26 neighbors)
- Magnetic extrapolation: Do the same thing with EEG
- Noise covariance matrix:
- Storage of multiple noise covariance matrices (just like the head models)
- Always save as full, then at inversion time, we can decide between full, heteroskedastic (diagonal) or homoskedastic (i.i.d, scalar)
Problem of having inividual trials + averages in the condition => Display warning or not?
- Save nAvg in noisecov file, to make it easier to scale to other recordings
When deploying to other conditions: Apply destination SSP (NoiseCov = SSP . NoiseCov . SSP' )
Sources on surface: Display peak regions over time (time = color) => A.Gramfort
- Simulation: synthesize pseudo data-files from a cortex patch (duration, amplitude, noise)
Calculate ImagingKernel * Gain for a scout
- EEG Source modeling: Manage references and bipolar montages properly (maybe not necessary)
- MEG source modeling: Do reconstruction only for a subset of sensors for estimating dipoles?
- Processes compute head model and sources: Additional option to set the file comment
Anatomy
Scouts:<<BR>>
- Display edges in the middle of the faces instead of the vertices
- Project scouts betweens subjects and between hemispheres
- Display scouts in a tree: hemisphere, region, subregion
- Downsample to atlas: allow on timefreq/connect files
- Sort scouts by region in process options
- Generate mixed density surfaces
- Import / registration:
- Major bug when importing surfaces for an MRI that was re-oriented manually
- Use mid-gray instead of pial surface?
Statistics
- ANOVA: Use LENA functions
- Output = 1 file per effect, all grouped in a node "ANOVA"
- Display several ANOVA maps (from several files) on one single figure, using a "graphic accumulator", towards which one can send any type of graphic object
- Permutation tests:
- t-test only (wilcoxon? sign-test?): paired, equal var, unequal var
- nb permutations ~ 1000
- maximum statistic over "time" or "time and space"
- Permutations / clustering: cf fieldtrip
Threshold in time: keep only the regions that are significative for contiguous blocks of time, or over a certain number of time points
=> Process that creates a static representation of a temporal window- t-test on volume sources
Paired t-test on unconstrained sources: (convert to flat + Z-score) => AnneSo
- Question of Gaussianity of the samples: take a subset of samples + Kolmogorov-Smirnov / Shapiro-Wilk test
http://www.mathworks.fr/fr/help/symbolic/mupad_ug/perform-shapiro-wilk-test.html
http://www.mathworks.fr/fr/help/symbolic/mupad_ref/stats-swgoft.html
http://stackoverflow.com/questions/14383115/shapiro-wilk-test-in-matlab
- Create icons for Stat/PAC, Stat/Sprectrum, etc.
- One sample t-test across subjects
Input / output
- EEG File formats:
EEG CeeGraph
- EGI: Finish support for epoched files (formats 3,5,7)
FieldTrip structures: In / Out
- BCI2000 Input (via EEGLAB plugin)
- Export TF maps to SPM / volumes
- EEGLAB import: Selection of conditions in script mode
Distribution & documentation
Add Help buttons and menus (in popups, dialog windows...) => Links to the website.
- Introduction tutorials:
- Processes: Describe all the processes
- Clusters
- First steps: Brainstorm preferences
- Headmodel: explain the fields + how to get the constrained leadfield
- Sources: Modelized data
- Sources: theshold min. size (not documented yet)
- Import raw recordings: Add "detect bad trials/channels" in the pipeline
- Temporary folder
Current bugs
- Import anatomy folder menu freezes Matlab on MacOS 10.9.3 / Matlab 2014a
- Import anatomy folder menu crashes on MacOSX 10.8.5 / Matlab 2013b
- Record tab: Text of epoch number is too big on MacOS
- Menu "Use default EEG cap" doesn't work for a multiple selection (setting the same EEG cap for several subjects)
- in_bst_data_multi: If trials have different sizes, output is random (the one of the first file)
- tree_dependencies: sources files, reprojected on default anatomy; If based on data files that are bad trials, they should be ignored by tree_dependencies, and they are not
- Image viewer has some bugs on some systems
- Screen capture for reports never works: Find another solution
- Screen capture when there is a fading effect in the window manager: captures the window
- Close figure with coherence results should hide the "frequency" slider
- Problems growing scouts on merged surfaces (Emily)
- Edit scout in MRI: small modifications cause huge increase of the scout size
Geeky programming details
- Interpolations: Use scatteredInterpolant, griddedInterpolant, triangulation.nearestNeighbor (Matlab 2014b)
- Use Matlab Coder to optimize some processes: Bandpass filter, sinusoid removal
- Hide Java panels instead of deleting them
- mri2scs: convert arguments to meters
- bst_warp and channel_project: Use tess_parametrize_new instead of tess_parametrize
- Shared kernels: do the "get bad channels" operation in a different way (reading all the files is too slow)
- Optimize bst_get:
- Now study and subject have necessarily the same folder name
- Replace big switch with separate functions
- Progress bar:
- Add different levels (to handle sub-processes)
- Make work correctly with RAW on resting tutorial
- Uniformize calls in bst_process/Run
- Add a "Cancel" button
- Line smoothing / anti-aliasing (time series figures)
- Fix all the 'todo' blocks in the code
- Replace handle "0" with bst_get('groot')