18900
Comment:
|
18597
|
Deletions are marked like this. | Additions are marked like this. |
Line 6: | Line 6: |
* Merging the 12+3 introduction tutorials to illustrate better the latest developments | * New online tutorials (work in progress) |
Line 9: | Line 9: |
* Implementation of a new unified minimum norm/beamformer framework | * Implementation of a new unified minimum norm/beamformer framework (work in progress) |
Line 12: | Line 12: |
* Significance thresholding of the connectivity matrices | * Significance thresholding of the connectivity matrices (2016) |
Line 15: | Line 15: |
* Removing the dependence to the Java interface to run in headless mode * Interacting directly with distributed computing systems ==== Compatibility ==== * Reading and writing FieldTrip structures * Calling FieldTrip functions from the pipeline * Calling EEGLAB ICA functions for cleaning ocular artifacts in EEG recordings |
* Removing the dependence to the Java interface to run in headless mode (not started) * Interacting directly with distributed computing systems (not started) |
Line 26: | Line 21: |
* Nicer 2D topographies, standardized (using FieldTrip .lay files?) * 2DLayout (recordings + TF): Use the same standard positions, too much space between sensors |
* Nicer 2D topographies, standardized (similar to EEGLAB plots, using FieldTrip .lay files?) * MEG/EEG registration: Apply the same transformation to multiple runs * 2DLayout: * Use the same standard positions, too much space between sensors (Recordings + TF) * Overlay multiple conditions * RAW files: Doesn't work when changing page => need refresh of GlobalData.Preferences.TopoLayoutOptions.TimeWindow * Same shortcuts as the raw file viewer (right-click + move for gain) |
Line 30: | Line 30: |
* 2DLayout: Doesn't work when changing page => need refresh of GlobalData.Preferences.TopoLayoutOptions.TimeWindow * Events: advanced process for recombining. Example: http://www.erpinfo.org/erplab/erplab-documentation/manual/Binlister.html * EEG reference/storage: * Bad channels that can be specified at the program level (for sites that have permanently bad channels) => AnneSo * Colormaps: * Create a colormap similar to MNE, where extrema are bright * NIRS: * Add new data type * Display of sensors by pairs oxy/deoxy (red/blue), overlaid |
* Events: advanced process for recombining. * Example: http://www.erpinfo.org/erplab/erplab-documentation/manual/Binlister.html * Bad channels specified at the program level (for sites that have permanent bad channels: AS) |
Line 41: | Line 35: |
* 2D Layout for multiple conditions * Filtering: Use short FIR filters instead of IIR for bandpass, to limit the ringing<<BR>>Or allow the users to edit the LowStop parameter in bst_bandpass. |
* Filtering: * Use short FIR filters instead of IIR for bandpass, to limit the ringing * Or allow the users to edit the LowStop parameter in bst_bandpass. |
Line 45: | Line 40: |
== Interface == * Start Brainstorm without Java (-nodesktop) * Generalize the user of the units (field .Units): Rewrite processes to save the units correctly * Colormaps: * Manage multiple custom colormaps * Allow brightness/contrast manipulations on the custom colormaps * Create a colormap similar to MNE, where extrema are bright * Global colormap max: Should get the maximum across all the open files * Open new figures as tab (docked in the Figures window) |
|
Line 46: | Line 51: |
== Interface == * Global colormap max: Should get the maximum across all the open files * Open new windows as tab |
* Removing all the CTRL and SHIFT in the keyboard shortcuts * Display warning before opening files that are too big |
Line 54: | Line 57: |
* Check why our Hilbert implementation has huge edge effects * Connectivity on unconstrained sources: how to group the three orientations? * Connectivity based on band limited power (Sylvain): * Compute Hilbert/Bandpass + correlation of the envelopes * Bandpass envelopes before computing correlations? * Compute Hilbert(sensors) and then project to source space? * Multi-tapers? |
|
Line 55: | Line 65: |
* Does not work on Matlab 2015a | * Re-write using pure Matlab code and smoothed graphics |
Line 57: | Line 67: |
* Fix zoom in one region | |
Line 60: | Line 69: |
* Re-write using pure Matlab code and smoothed graphics | |
Line 65: | Line 73: |
* Average cross-spectrum instead of concatenating epochs (to avoid discontinuities) | * Average cross-spectra instead of concatenating epochs (to avoid discontinuities) |
Line 69: | Line 77: |
* Add progress bar management | * Add progress bar |
Line 77: | Line 85: |
* Add input TF , to disconnect TF decomposition and PAC computation (Peter) | |
Line 82: | Line 91: |
* Time-resolved correlation/coherence: Display as time bands | |
Line 86: | Line 96: |
* Multi-tapers? * Work on progress bars |
|
Line 91: | Line 99: |
* Distributed processing: Brainstorm that can run without Java | * Optimize pipeline editor speed: Opening the window and the showing menu "Add process" are slow * ICA: * Exploration: Add window with spectral decomposition (useful for muscle artifacts) * Comparison JADE/Infomax: <<BR>> http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030135 * Add methods: SOBI, Fastica, AMICA/CUDICA (recommended by S Makeig) * Dimension reduction with PCA adds artifacts: Not done by default in EEGLAB<<BR>>Contact: Stephen Shall Jones ( shall-jones@infoscience.otago.ac.nz )<<BR>>Student Carl Leichter detailed this in his thesis * S Makeig: Use ICA to select the IC of interest instead of only removing artifacts * Display of spectrum for components (PSD/FFT) * Use FastICA (algo crashing) * Understand why EEG/Epilepsy tutorial data crashes if we don't limit the number of components * Add components preselection: Correlation with EOG/ECG |
Line 94: | Line 112: |
* Call FieldTrip functions from pipeline editor * Optimize opening time ofr for the menu "Add process" |
|
Line 97: | Line 113: |
* Make average the default option | |
Line 100: | Line 115: |
* Bandpass: <<BR>> | * Bandpass: |
Line 102: | Line 117: |
* Rewrite without the force low-pass filter at Fs/3 | * Rewrite without the forced low-pass filter at Fs/3 |
Line 106: | Line 121: |
* Apply on the signal before any frequency/connectivity/PAC analysis * Using ARIMA(5,0,1) * Example code:<<BR>><<BR>> {{{ arm = mean(lpc(diff(detrend(Fbase')),5)); % detrend and diff PRE = filter(arm,1,diff(detrend(Fbase')))'; % apply to the data| X = filter(arm,1,diff(detrend(F')))'; X(:,1:length(arm)) = []; Time = tndx((length(arm)+2):end)/1000 - SOT; }}} |
* ARIMA(5,0,1): Apply on the signal before any frequency/connectivity/PAC analysis |
Line 122: | Line 128: |
* Interpolate the bad channels * ICA for cleaning eye movements in EEG low density (SSP don't work well) |
|
Line 131: | Line 135: |
* Induced calculation: Avg(Power(TF(trials - Avg(Trials)))): <<BR>>Add option "Remove evoked response from each trial" | |
Line 137: | Line 142: |
* Impossible to keep complex values for unconstrained sources * Pad short epochs with zero values for getting lower frequencies * Hilbert with time bands very slow on very long files (eg. 3600s at 1000Hz) because the time vector is still full (10^7 values): save compressed time vector instead. |
|
Line 141: | Line 149: |
* Allow the detection on differences of signals (bipolar montages) | |
Line 150: | Line 159: |
* Current Source Density (CSD) => Ghislaine<<BR>>http://psychophysiology.cpmc.columbia.edu/software/CSDtoolbox/index.html * Other processes:<<BR>> |
* Other processes: |
Line 162: | Line 170: |
* Use field process field "Group" to separate Input/Processing/Output options | |
Line 164: | Line 173: |
* Optimize startup speed * Start Brainstorm without Java (-nodesktop) |
|
Line 168: | Line 175: |
* Group matrix files => allow to process matrix files by trial types | * Matrix files: * Group matrix files => allow to process matrix files by trial types * Allow to be dependent from other files |
Line 175: | Line 184: |
* Allow matrix files to be attached to other files |
|
Line 188: | Line 195: |
* Mixed head models: * Project to templates * Create scout form maximum doesn't work (menu Sources > Max value) * Display in MRI doesn't work * Smooth display: do not smooth subcortical structures |
|
Line 189: | Line 201: |
* Finish dipole scanning (allow the tab to control multiple figures separately) * Dipole fitting: We will not implement non-linear fits, recommended use of dense volume grids |
|
Line 194: | Line 204: |
* Create scout form maximum: Not available yet for mixed/volume head model. | |
Line 196: | Line 205: |
* Inner and outer skull surfaces generator from FieldTrip (needs SPM, probably not so different from BST) | * Inner and outer skull surfaces generator from FieldTrip (needs SPM) |
Line 203: | Line 212: |
* Compute unconstrained and then project on the normal ? * Difference and stat should be: norm(A) - norm(B) |
|
Line 208: | Line 215: |
* Scouts 3D | |
Line 219: | Line 225: |
* When deploying to other conditions: Apply destination SSP (NoiseCov = SSP . NoiseCov . SSP' ) | * When deploying to other conditions: Apply destination SSP (NoiseCov = SSP.NoiseCov.SSP' ) |
Line 229: | Line 235: |
* Display volume scouts and surface scouts at the same time | |
Line 237: | Line 242: |
* Menu Sources > Simulate recordings: * Do not close the 3D figures after generating a new file * Add a process equivalent to this menu |
|
Line 239: | Line 247: |
* Project all sub-cortical structures to default anatomy | * Bug: Head surface generated with Brainstorm is too large * MNI coordinates: Extend to non FreeSurfer volumes (BrainSuite volumes that are not 256x256x256) * Project all sub-cortical structures to default anatomy (check code from Denis S) * Add cerebellum to default model generated with "Import FS anatomy" * Import MRIs with different resolutions: re-interpolate automatically * Edit fiducials: Replace 6 text boxes with 1 for easy copy-paste (see fiducials.m) |
Line 243: | Line 256: |
* Project scouts betweens subjects and between hemispheres | |
Line 247: | Line 259: |
* Menu head model > Copy to other conditions/subjects (check if applicable first) * Generate mixed density surfaces * Major bug when importing surfaces for an MRI that was re-oriented manually * Smooth surface: Fix little spikes to irregularities in the mesh * Add eyes models to attract eye activity == ECOG/SEEG == |
|
Line 248: | Line 267: |
* Generate mixed density surfaces * Import / registration: * Major bug when importing surfaces for an MRI that was re-oriented manually * Use mid-gray instead of pial surface? * Smooth surface: Fix little spikes to irregularities in the mesh * Menu head model > Copy to other conditions/subjects (check if applicable first) * Add cerebellum to default model generated with "Import FS anatomy" * Add eyes models to attract eye activity |
* Import/export electrodes positions in MNI/SCS/MRI coordinates * Display SEEG+ECOG contacts at the same time * Problem of difference between RAS and TkRegRAS: http://neuroimage.usc.edu/forums/showthread.php?1958-SEEG-electrodes-and-subject-s-anatomy-are-not-alligned |
Line 258: | Line 272: |
* ANOVA: Use LENA functions | * ANOVA: Use LENA functions(?) |
Line 261: | Line 275: |
* Permutation tests: * t-test only (wilcoxon? sign-test?): paired, equal var, unequal var * http://www.adscience.fr/uploads/ckfiles/files/html_files/StatEL/statel_wilcoxon.htm * http://www.mathworks.fr/fr/help/stats/signrank.html * Less powerful than t-tests * nb permutations ~ 1000 * maximum statistic over "time" or "time and space" * Permutations / clustering: cf fieldtrip * http://fieldtrip.fcdonders.nl/tutorial/cluster_permutation_timelock * http://fieldtrip.fcdonders.nl/tutorial/cluster_permutation_freq * Threshold in time: keep only the regions that are significative for contiguous blocks of time, or over a certain number of time points<<BR>> => Process that creates a static representation of a temporal window * t-test on volume sources * Paired t-test on unconstrained sources: (convert to flat + Z-score) => AnneSo |
* Problem t-test on unconstrained sources: (convert to flat + Z-score) => AnneSo * Waiting for test from Dimitrios |
Line 280: | Line 283: |
* Create icons for Stat/PAC, Stat/Sprectrum, etc. * One sample t-test across subjects |
* Stat FieldTrip: impossible to do Abs(Mean(Sources)) => Is it a problem? * PLS: Partial Least Squares |
Line 284: | Line 287: |
* Finish MINC/CIVET integration (finir lecture MINC2: P Bellec) * Send email to CIVET mailing list when done * FieldTrip structures: In / Out (see fieldtrip/utilities/ft_datatype_*) |
* FieldTrip structures: Import/Export continuous recordings and non-averaged trials. |
Line 292: | Line 293: |
* Selection of conditions in script mode | |
Line 297: | Line 297: |
* gTec EEG recordings: Read directly from the HDF5 files instead of the Matlab exports. | |
Line 299: | Line 300: |
* Document iEEG in "What's new" * Rewrite basic 12+3 tutorials: group in one series * Illustrate 2D Layout * Illustrate unconstrained sources |
* Reference tutorials on Google scholar + ResearchGate |
Line 305: | Line 303: |
* Publication list: Fold by years |
|
Line 309: | Line 305: |
* Auditory: Extend to MNE/EEGLAB/SPM | |
Line 315: | Line 310: |
* Describe all the processes * Statistics |
|
Line 318: | Line 311: |
* Intra-cranial recordings (Average ref by groups using Comment field) | * Intra-cranial recordings |
Line 322: | Line 315: |
* First steps: Brainstorm preferences * First steps: Temporary folder * Exploration: Clusters * Headmodel: explain the fields + how to get the constrained leadfield |
|
Line 327: | Line 316: |
* Sources: Theshold min. size (not documented yet) | |
Line 330: | Line 318: |
* File manipulation: file_short, file_fullpath, in_bst_*... * Description of all fields in MRI and surfaces |
|
Line 332: | Line 322: |
* Reference tutorials on Google scholar * Play videos on wiki with <video> tag (save videos in .ogg) |
|
Line 336: | Line 324: |
* Workshops: * Create scouts doesn't work: scout created on the other side of the brain * Import anatomy folder: Out of memory on Win 32bits (restart Matlab) * Compute head model: Out of memory on Win 32bits * Bandpass filter: Out of memory (Auditory workshop) * Bug workshop Michael (Mint 12/gnome3/linux 3.0.0-12, KWin/Mutter/Compiz) * Cannot import two .ds folders at once * Colors inverted in the PSD/TF plots (power vs. log) * Cannot type the name of a channel in "Detect ECG" * Image viewer: Difficult to get to 100% * Canolty maps computation: Fix progress bar * Smooth TF windows that contain multiple plots |
* Interface looks small on screens with very high resolutions: Reduce the resolution * Progress bar: * Doesn't close properly on some Linux systems * Focus requests change workspace when processing constantly (Linux systems) * Screen capture: * Bug on Win8/Win10 * Window managers with fading effect: captures the top window * Image viewer: * Difficult to get to 100% * Buggy on some systems * 2DLayout: * (time series) Sometimes the lines are not visible * (time series) Does not work when DC offset is not removed * (TF) Images are too far apart with EEG 20 channels * Out of memory errors on Win 32bits (restart Matlab) |
Line 350: | Line 341: |
* tree_dependencies: sources files, reprojected on default anatomy; If based on data files that are bad trials, they should be ignored by tree_dependencies, and they are not * Image viewer has some bugs on some systems * Screen capture when there is a fading effect in the window manager: captures the window * Close figure with coherence results should hide the "frequency" slider |
|
Line 356: | Line 343: |
* Optimize MRI viewer with patch() instead of image() | |
Line 358: | Line 344: |
* 2DLayout (time series): * Sometimes the lines are not visible * Does not work when DC offset is not removed * 2DLayout (TF): Images are too far apart with EEG 20 channels |
|
Line 364: | Line 346: |
* Canolty maps computation: Fix progress bar | |
Line 366: | Line 349: |
* Removing all the CTRL and SHIFT in the keyboard shortcuts | |
Line 368: | Line 350: |
* mri2scs: convert arguments to meters * Interpolations: Use scatteredInterpolant, griddedInterpolant, triangulation.nearestNeighbor (Matlab 2014b) |
* Interpolations: Use scatteredInterpolant, griddedInterpolant, triangulation.nearestNeighbor (2014b) |
Line 371: | Line 352: |
* Shared kernels: do the "get bad channels" operation in a different way (reading all the files is too slow) | * Shared kernels: "get bad channels" operation in a different way (reading all the files is too slow) |
Line 380: | Line 361: |
* Line smoothing / anti-aliasing (time series figures) | |
Line 385: | Line 365: |
* in_bst_results (isFull=1): DataFile should be relative | * Optimize MRI viewer with patch() instead of image() |
What's next
A roadmap to the future developments of Brainstorm.
Current topics
Documentation
- New online tutorials (work in progress)
Source modeling
- Implementation of a new unified minimum norm/beamformer framework (work in progress)
Functional connectivity
- Significance thresholding of the connectivity matrices (2016)
Computation
- Removing the dependence to the Java interface to run in headless mode (not started)
- Interacting directly with distributed computing systems (not started)
Recordings
Nicer 2D topographies, standardized (similar to EEGLAB plots, using FieldTrip .lay files?)
- MEG/EEG registration: Apply the same transformation to multiple runs
- 2DLayout:
- Use the same standard positions, too much space between sensors (Recordings + TF)
- Overlay multiple conditions
RAW files: Doesn't work when changing page => need refresh of GlobalData.Preferences.TopoLayoutOptions.TimeWindow
- Same shortcuts as the raw file viewer (right-click + move for gain)
- RAW file viewer:
- Pre-load next page of recordings
- Events: advanced process for recombining.
Example: http://www.erpinfo.org/erplab/erplab-documentation/manual/Binlister.html
- Bad channels specified at the program level (for sites that have permanent bad channels: AS)
- Images of amplitude: [sensor x time], [trial x time], scout: [trial x time]
Can be done with Matrix > View as image: extract cluster, concatenate for all trials
- Filtering:
- Use short FIR filters instead of IIR for bandpass, to limit the ringing
Or allow the users to edit the LowStop parameter in bst_bandpass.
- Show easily recordings maximum/values in the file viewer
Interface
- Start Brainstorm without Java (-nodesktop)
- Generalize the user of the units (field .Units): Rewrite processes to save the units correctly
- Colormaps:
- Manage multiple custom colormaps
- Allow brightness/contrast manipulations on the custom colormaps
- Create a colormap similar to MNE, where extrema are bright
- Global colormap max: Should get the maximum across all the open files
- Open new figures as tab (docked in the Figures window)
- Copy figures to clipboard (with the screencapture function)
- Removing all the CTRL and SHIFT in the keyboard shortcuts
- Display warning before opening files that are too big
Connectivity
- Thresholding the connectivity matrices
- t-tests on connectivity measures
- Check why our Hilbert implementation has huge edge effects
- Connectivity on unconstrained sources: how to group the three orientations?
- Connectivity based on band limited power (Sylvain):
- Compute Hilbert/Bandpass + correlation of the envelopes
- Bandpass envelopes before computing correlations?
- Compute Hilbert(sensors) and then project to source space?
- Multi-tapers?
- Graph view:
- Re-write using pure Matlab code and smoothed graphics
- Fixed scales for intensity sliders
- Text bigger
- Too much data in appdata
- Fixed scales for intensity sliders
- Add "=" shortcut for having graphs with similar configurations
- Disable zoom in one region (serious bugs)
- Coherence:
- Average cross-spectra instead of concatenating epochs (to avoid discontinuities)
- Granger:
- Crashes sometimes: improve stability
- Re-write and optimize code
- Add progress bar
- PLV:
- Add p-values
- Remove evoked
- Optimize code
- Add time integration
- Unconstrained sources
- PAC:
- Add input TF , to disconnect TF decomposition and PAC computation (Peter)
- Refine frequency vector of low frequencies
- How many central frequencies to use in bst_pac?
- Change filters: no chirplet functions
- bst_freqfilter: Use nfcomponents like in bst_pac
- Esther recommended a larger frequency binning of the PAC estimation
- Time-resolved correlation/coherence: Display as time bands
- Other metrics:
- Coherence by bands: bst_coherence_band_welch.m
- Granger by bands: bst_granger_band.m
- Inter-trial coherence
Tutorial coherence [1xN] : Reproduce FieldTrip results?
Processes
- Optimize pipeline editor speed: Opening the window and the showing menu "Add process" are slow
- ICA:
- Exploration: Add window with spectral decomposition (useful for muscle artifacts)
Comparison JADE/Infomax:
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030135- Add methods: SOBI, Fastica, AMICA/CUDICA (recommended by S Makeig)
Dimension reduction with PCA adds artifacts: Not done by default in EEGLAB
Contact: Stephen Shall Jones ( shall-jones@infoscience.otago.ac.nz )
Student Carl Leichter detailed this in his thesis- S Makeig: Use ICA to select the IC of interest instead of only removing artifacts
- Display of spectrum for components (PSD/FFT)
- Use FastICA (algo crashing)
- Understand why EEG/Epilepsy tutorial data crashes if we don't limit the number of components
- Add components preselection: Correlation with EOG/ECG
- Use Matlab Coder to optimize some processes: Wavelets, bandpass filter, sinusoid removal
- Allow processes in Python and Java
- SSP:
Display warning if changing the ChannelFlag while there is a Projector applied
Show where the attenuation is projected:
(sum(IK,2)-sum(SSP(k,:)*IK,2)./sum(IK,2)
- Bandpass:
- Offer option: bst_bandpass_fft / bst_bandpass_filter
- Rewrite without the forced low-pass filter at Fs/3
- Show warning when using inappropriate high-pass filter (precision too high)
- Use FIR filter
- Spectral flattening (John):
- ARIMA(5,0,1): Apply on the signal before any frequency/connectivity/PAC analysis
- PSD:
- Rewrite to have the same input as coherence
- Normalize with the total power (TF/sum(TF,3))
Remove line noise: http://www.nitrc.org/projects/cleanline
- Band-limited power envelope
- Reports:
- Save as HTML / PDF
- Do not display the intermediate files
- Pipeline editor:
- Add loops over subjects/conditions/trial groups
- Time-frequency:
Induced calculation: Avg(Power(TF(trials - Avg(Trials)))):
Add option "Remove evoked response from each trial"- Standardize using: diff before calculation + cumsum (checkbox "flatten data")
- Frequency bands: extended syntax (ex: [2 3 4], 10:5:90, ...)
- Display logs as negative
- 2D Layout in spectrum
- Make much faster and more memory efficient (C functions coded by Matti ?)
- TF scouts: should display average of TF maps
- Impossible to keep complex values for unconstrained sources
- Pad short epochs with zero values for getting lower frequencies
- Hilbert with time bands very slow on very long files (eg. 3600s at 1000Hz) because the time vector is still full (10^7 values): save compressed time vector instead.
- Artifact detection:
- Detection of bad segments in the RAW files (Beth)
- Artifact rejection like SPM: if bad in 20%, bad everywhere
- Test difference between adjacent samples
- Allow the detection on differences of signals (bipolar montages)
- Average:
- Remember how many trials were used per channel
- Save standard deviation
- Display standard deviation as a halo around the time series
- Co-registration of MEG runs:
- SSP: Group projectors coming from different files
- Finish validation of the method
- Apply to continuous recordings for correcting head movements
- Resample continuous files
- Other processes:
- Moving average
- Max
- Median
- Significance test (Dimitrios, Leo)
- Spatial smoothing: check / document parameters
Contact sheets & movies: use average of time windows instead of single instants, for each picture.
- Optical flow
- Simulation:
Fix units in simulation processes => no *1e-9 in "simulate recordings"
- Use "add noise" process from Hui-Ling (in Work/Dev/Divers)
- Use field process field "Group" to separate Input/Processing/Output options
Database
- Sort files by comment
- MEG protocols: More flexible organization of the database; sub-conditions to allow different runs X different conditions.
- Matrix files:
Group matrix files => allow to process matrix files by trial types
- Allow to be dependent from other files
- Add notes in the folders (text files, visible as nodes in the tree)
- Screen captures: save straight to the database
- Rename multiple files
Distributed computing
Options from FieldTrip:
Loose collection of computers: https://github.com/fieldtrip/fieldtrip/tree/master/peer
Alternative, with less limitations: http://research.cs.wisc.edu/htcondor/
Single multicore machine: https://github.com/fieldtrip/fieldtrip/tree/master/engine
Batch system: https://github.com/fieldtrip/fieldtrip/tree/master/qsub
Documentation: http://fieldtrip.fcdonders.nl/faq#distributed_computing_with_fieldtrip_and_matlab
Source modeling
- Mixed head models:
- Project to templates
Create scout form maximum doesn't work (menu Sources > Max value)
- Display in MRI doesn't work
- Smooth display: do not smooth subcortical structures
- Dipoles:
- panel_dipoles: Doesn't work with multiple figures
- Read easily dipole coordinates: Click on one selects it and open the panel Get coordinates
- Panel Get coordinates: Add button "find maximum"
- Stenroos 2014 paper: Include the following methods
Inner and outer skull surfaces generator from FieldTrip (needs SPM)
- Nolte corrected-sphere model (good model re:Alex)
- Fast BEM models
- Visualize Beamformer results:
- Read CTF SAM .svl
- Display as layers in the MRI viewer
- Unconstrained sources:
- Stat and connectivity: what to do? (re-send email John+Sylvain)
- Overlapping spheres: improve the estimation of the spheres for the frontal lobes
- Volume grid:
- Test volume sources with all the subsequent processes (timefreq, stat...)
- Optimize: 3D display (better than 9x9 cubes)
- Optimize: vol_dilate (with 26 neighbors)
- Magnetic extrapolation: Do the same thing with EEG
- Noise covariance matrix:
- Display with figure_image()
- Storage of multiple noise covariance matrices (just like the head models)
- Always save as full, then at inversion time, we can decide between full, heteroskedastic (diagonal) or homoskedastic (i.i.d, scalar)
Problem of having inividual trials + averages in the condition => Display warning or not?
- Save nAvg in noisecov file, to make it easier to scale to other recordings
When deploying to other conditions: Apply destination SSP (NoiseCov = SSP.NoiseCov.SSP' )
Sources on surface: Display peak regions over time (time = color) => A.Gramfort
- Simulation: synthesize pseudo data-files from a cortex patch (duration, amplitude, noise)
Calculate ImagingKernel * Gain for a scout
- EEG Source modeling: Manage references and bipolar montages properly (maybe not necessary)
- MEG source modeling: Do reconstruction only for a subset of sensors for estimating dipoles?
- Processes compute head model and sources: Additional option to set the file comment
- Time-frequency beamformers:
- Band-pass everything in different frequency bands + Source estimation + TF
- Ask data to Sarang where he sees effects that cannot be extracted with MN followed by TF
- Process "Extract scouts time series": Add PCA option (replace isnorm with choice PCA/Norm)
- BEM: Fix unstable results when one vertex is too close from the layers (5mm ?)
- Hui-Ling beamformers:
- More explanations about what is in NAI and Spatial filters
Explain that is this is better to study effects extended in time (Ntime > Nsensors)
- Group LCMV+MCB
- Condition LEFT median nerve: very bad results
Menu Sources > Simulate recordings:
- Do not close the 3D figures after generating a new file
- Add a process equivalent to this menu
Anatomy
- Bug: Head surface generated with Brainstorm is too large
MNI coordinates: Extend to non FreeSurfer volumes (BrainSuite volumes that are not 256x256x256)
- Project all sub-cortical structures to default anatomy (check code from Denis S)
- Add cerebellum to default model generated with "Import FS anatomy"
- Import MRIs with different resolutions: re-interpolate automatically
- Edit fiducials: Replace 6 text boxes with 1 for easy copy-paste (see fiducials.m)
- Warping: Scale option has to be fixed, it is currently very unstable
- Scouts:
- Display edges in the middle of the faces instead of the vertices
- Display scouts in a tree: hemisphere, region, subregion
- Downsample to atlas: allow on timefreq/connect files
- Sort scouts by region in process options
Menu head model > Copy to other conditions/subjects (check if applicable first)
- Generate mixed density surfaces
- Major bug when importing surfaces for an MRI that was re-oriented manually
- Smooth surface: Fix little spikes to irregularities in the mesh
- Add eyes models to attract eye activity
ECOG/SEEG
- Co-register MRI and CT for electrodes marking in the MRI Viewer
- Import/export electrodes positions in MNI/SCS/MRI coordinates
- Display SEEG+ECOG contacts at the same time
Problem of difference between RAS and TkRegRAS: http://neuroimage.usc.edu/forums/showthread.php?1958-SEEG-electrodes-and-subject-s-anatomy-are-not-alligned
Statistics
- ANOVA: Use LENA functions(?)
- Output = 1 file per effect, all grouped in a node "ANOVA"
- Display several ANOVA maps (from several files) on one single figure, using a "graphic accumulator", towards which one can send any type of graphic object
Problem t-test on unconstrained sources: (convert to flat + Z-score) => AnneSo
- Waiting for test from Dimitrios
- Question of Gaussianity of the samples: take a subset of samples + Kolmogorov-Smirnov / Shapiro-Wilk test
http://www.mathworks.fr/fr/help/symbolic/mupad_ug/perform-shapiro-wilk-test.html
http://www.mathworks.fr/fr/help/symbolic/mupad_ref/stats-swgoft.html
http://stackoverflow.com/questions/14383115/shapiro-wilk-test-in-matlab
Stat FieldTrip: impossible to do Abs(Mean(Sources)) => Is it a problem?
- PLS: Partial Least Squares
Input / output
FieldTrip structures: Import/Export continuous recordings and non-averaged trials.
- EEG File formats:
EEG CeeGraph
- EGI: Finish support for epoched files (formats 3,5,7)
- BCI2000 Input (via EEGLAB plugin)
- EEGLAB import:
- Support for binary AND epoched files (now it's one or the other)
- Allow epoched files with recordings saved in external files (now external files implies continuous recordings)
- BST-BIN: Add compression
- Review raw on all the file formats (ASCII EEG and Cartool missing)
- gTec EEG recordings: Read directly from the HDF5 files instead of the Matlab exports.
Distribution & documentation
Reference tutorials on Google scholar + ResearchGate
- Cleaning threads on the forum
Add Help buttons and menus (in popups, dialog windows...) => Links to the website.
- Finish existing tutorials:
- Dipoles
- Auditory: Finish scripts
- Group MEM/Epilepsy + Epilepsy tutorials
- New tutorials:
- MEG connectome
- Scrambled faces (SPM/MNE-Python)
- Coherence (cortico-muscular ?)
- Intra-cranial recordings
- Co-register MEG runs (Beth)
- Missing in the introduction tutorials:
- Volume scouts
- Sources: Model evaluation (by simulating recordings)
- Time-frequency: Description of "log freq scale" option
- Modify a structure manually: Export to Matlab/Import from Matlab
- File manipulation: file_short, file_fullpath, in_bst_*...
- Description of all fields in MRI and surfaces
- Missing in tutorial "Export to SPM": Add section "Compare with Brainstorm"
- Missing in page "Cite Brainstorm": Add all the methods used in the software
Current bugs
- Interface looks small on screens with very high resolutions: Reduce the resolution
- Progress bar:
- Doesn't close properly on some Linux systems
- Focus requests change workspace when processing constantly (Linux systems)
- Screen capture:
- Bug on Win8/Win10
- Window managers with fading effect: captures the top window
- Image viewer:
- Difficult to get to 100%
- Buggy on some systems
- 2DLayout:
- (time series) Sometimes the lines are not visible
- (time series) Does not work when DC offset is not removed
- (TF) Images are too far apart with EEG 20 channels
- Out of memory errors on Win 32bits (restart Matlab)
- Record tab: Text of epoch number is too big on MacOS
- in_bst_data_multi: If trials have different sizes, output is random (the one of the first file)
- Edit scout in MRI: small modifications cause huge increase of the scout size
- Reports: Text size is too small with Java 1.5 (2006b-2007a)
- Matlab 2014b bug with rmdir/movefile: Enter but never returns from the call
- Colormap menus: Do not work well on compiled MacOSX 10.9.5 and 10.10
- Event markers are not visible anymore with the sequence: Open MEG, open EOG, close MEG.
- Canolty maps computation: Fix progress bar
Geeky programming details
- Hide Java panels instead of deleting them
- Interpolations: Use scatteredInterpolant, griddedInterpolant, triangulation.nearestNeighbor (2014b)
- bst_warp and channel_project: Use tess_parametrize_new instead of tess_parametrize
- Shared kernels: "get bad channels" operation in a different way (reading all the files is too slow)
- Optimize bst_get:
- Now study and subject have necessarily the same folder name
- Replace big switch with separate functions
- Progress bar:
- Add different levels (to handle sub-processes)
- Make work correctly with RAW on resting tutorial
- Uniformize calls in bst_process/Run
- Add a "Cancel" button
- Fix all the 'todo' blocks in the code
- Replace handle "0" with bst_get('groot')
- At the end of bst_startup in compiled mode, replace loop with waitfor(jFrame)
- Error message: Add a link to report directly the bug on the forum
- Optimize MRI viewer with patch() instead of image()