10561
Comment:
|
9770
|
Deletions are marked like this. | Additions are marked like this. |
Line 11: | Line 11: |
* Interface for defining the position in intracranial electrodes in the MRI viewer | |
Line 13: | Line 12: |
* Editing the position of intracranial electrodes in the MRI viewer | |
Line 28: | Line 28: |
* Screen setups | * Screen setups: save configuration of windows |
Line 33: | Line 33: |
* Set the amplidute scale for the time series | * Set the ampliude scale for the time series |
Line 55: | Line 55: |
* 2D Layout for multiple conditions | |
Line 74: | Line 75: |
* Parallel processing: Use parfor | |
Line 77: | Line 77: |
* Use the BIC/MEG cluster from the pipeline interface (PSOM, P.Bellec) | |
Line 97: | Line 96: |
* Optical flow | |
Line 99: | Line 99: |
* Filter display of the database explorer (filename, file type, comment...) | |
Line 101: | Line 100: |
* GUI: Save configuration of windows (per protocol) | |
Line 105: | Line 103: |
* Screen captures: save straight to the database |
|
Line 107: | Line 107: |
* Scouts: * Represent border as the middle of the adjacent triangles (to have a full segmentation) |
|
Line 115: | Line 113: |
* Define as default * Check all the processes |
|
Line 124: | Line 120: |
* Optimize: grid_interp_mri | |
Line 127: | Line 122: |
* Project sources: * Adapt smooth factor to the number of vertices * Number of neighbors to consider = average number of neighbors in the target mesh. * Compute by small time blocks |
|
Line 142: | Line 133: |
* Use the !FreeSurfer subject co-registration (downsample: keep the correspondance) | * Scouts: * Mix constrained/unconstrained/volume sources, using the "Source model" atlas * Display edges in the middle of the faces instead of the vertices * Project scouts betweens subjects and between hemispheres * Display scouts in a tree: hemisphere, region, subregion * Downsample to atlas: allow on timefreq/connect files * Generate mixed density surfaces |
Line 144: | Line 141: |
* Improve ICP registration headpoints / scalp (chanfrein, multi-resolution, see with C Grova...) * Auto-reorientation of MRI after selected NAS / LPA / RPA |
|
Line 147: | Line 142: |
* ICBM brain * MINC MRI reader: EMMA, NIAK (Pierre Bellec), HDF5 directly read in Matlab * ICBM average surfaces + atlas * Using CIVET pipeline for extracting surfaces * Clustering cortex: Dimitrios, David, Yu-Teng |
* Use mid-gray instead of pial surface? |
Line 166: | Line 156: |
* t-test on volume sources * Create icons for Stat/PAC, Stat/Sprectrum, etc. |
|
Line 168: | Line 160: |
* MRI: MINC format | |
Line 171: | Line 162: |
* NEUROFILE = COHERENCE EEG/video !LongTerm Monitoring | |
Line 175: | Line 165: |
* !FreeSurfer: orig.mgz | |
Line 190: | Line 179: |
* Processes: How to write your own processes (user folder for processes) | |
Line 193: | Line 181: |
* How to export sources for analysis in SPM | |
Line 197: | Line 184: |
* How to make and compress a movie (Brainstorm + !VirtualDub + XVid) * Ask users to send their channel files, align on Colin, distribute |
|
Line 201: | Line 186: |
* Cleaning surfaces: should work with atlases | * Use Matlab Coder to optimize some processes: Bandpass filter, sinusoid removal |
Line 204: | Line 189: |
* Zip files created cannot be open with !WinZip * Waitbars: * Replace old waitbars with java ones * Add a "Cancel" button on waitbars when the bounds are defined (ie. when bst controls the process) |
* Waitbars: Add a "Cancel" button on waitbars when the bounds are defined (ie. when bst controls the process) |
Line 213: | Line 195: |
* Write shepards.m with new algorithm for nearest neighbors * Use Matlab Coder to compile / optimize some processes |
|
Line 216: | Line 196: |
* Stat files: store tmap or pmap, not both * Progress bar with different levels (to handle sub-processes) * Progress bar: make work correctly with RAW on resting tutorial * Line smoothing / anti-aliasing (time series figures) |
What's next
A roadmap to the future developments of Brainstorm.
Current topics
Functionnal connectivity
Integration of different metrics to study the brain connectivity:
Correlation, coherence, Granger causality, phase locking value- Development of new ways to represent the connectivity between sensors or brain regions
EEG / epilepsy / intra-cranial recordings
- New tools for exploring EEG recordings (custom montages, faster viewer)
- Full EEG/epilepsy online tutorial
- Editing the position of intracranial electrodes in the MRI viewer
Source modeling
- Computation of equivalent current dipoles
- Beamformers
Large scale analysis
- Parallel processing: Reduce the computation times using the parallel processing toolbox
- Distributed processing: Integrate tools for sending Brainstorm processes on computation clusters
Recordings
- RAW file viewer:
- Pre-load next page of recordings
- Allow multiple RAW windows(columns display)
- Screen setups: save configuration of windows
- Time scale: define in fixed s/mm (like the CTF tools)
- Secondary windows: display length of time selection
- If "Use SSP " option is selected, automatically select "Remove baseline" and "CTF compensations"
- Documentation: Add definition of bad segments
- Set the ampliude scale for the time series
- CTRL+S : Save modifications
- RAW processing:
- Make it work for all the file formats(at least bandpass filter)
Events: advanced process for recombining. Example: http://www.erpinfo.org/erplab/erplab-documentation/manual/Binlister.html
- Improve interface for SSP on imported recordings
Bad channels that can be specified at the program level (for sites that have permanently bad channels) => AS Dubarry
- Colormaps:
Define manually minimum => 3 options: [0,max], [-max,max], [min,max]
- Create a colormap similar to MNE, where extrema are bright
- Grey out the portion of the colorbars not displayed because of the threshold
- bst_selections:
- Add user defined combinations of sensors (eg. "double banana" for EEG)
- Use this to produce "inversed polarity" displayes too (useful in EEG)
- Import data:
- Save properties "baseline" and "resample" at the level of the protocol (to re-use for all the files)
- NIRS:
- Add new data type
- Display of sensors by pairs oxy/deoxy (red/blue), overlaid
- Intracranial electrodes:
- Define and display in the MRI viewer
- Images of amplitude: [sensor x time], [trial x time], scout: [trial x time] (similaire to erpimage in eeglab)
- 2D Layout for multiple conditions
Connectivity
- Figures: interaction with sensor selection / scouts selections
- Display NxN as 1xN
- Adapt colormaps for correlation (min and max properties)
- PLV: Add a time integration
- Work on progress bars
- Circle plot:
- Display Neuromag sensors
- Event-related coherence?
Processes
- Time-frequency:
- Frequency bands: extended syntax (ex: [2 3 4], 10:5:90, ...)
- Scouts values for timefreq on surfaces
- How to combine 3 orientations for unconstrained sources
- Display logs as negative
- 2D Layout in spectrum
- Make much faster and more memory efficient (C functions coded by Matti ?)
- Distributed processing:
- Version of Brainstorm that can run without JAVA
- SSP:
Display warning if changing the ChannelFlag while there is a Projector applied
- When processing multiple files: waitbar is not behaving well
- Average:
- Remember how many trials were used per channel
- Save standard deviation
- Display standard deviation as a halo around the time series
- Co-registration of MEG runs:
- SSP: Group projectors coming from different files
- Finish validation of the method
- Apply to continuous recordings for correcting for head movements (using head position coils)
Current Source Density (CSD) => Ghislaine
http://psychophysiology.cpmc.columbia.edu/software/CSDtoolbox/index.html- Other processes:
- Moving average
- Max
- Median
- Significance test (Dimitrios, Leo)
- Spatial smoothing: check / document parameters
Contact sheets & movies: use average of time windows instead of single instants, for each picture.
- Optical flow
Database
- MEG protocols: More flexible organization of the database; sub-conditions to allow different runs X different conditions.
- Add notes in the folders (text files, visible as nodes in the tree)
- Screen captures: save straight to the database
Source modeling
- Dipole fitting
- Visualize Beamformer results (contact Zainab Fatima):
- Read CTF SAM .svl
- Create new file type in the database
- Display as layers in the MRI viewer
- Unconstrained sources:
- Compute unconstrained and then project on the normal ?
- Difference and stat should be: norm(A) - norm(B)
- Overlapping spheres: improve the estimation of the spheres for the frontal lobes
- Volume grid:
- Scouts 3D
- Test volume sources with all the subsequent processes (timefreq, stat...)
- Optimize: 3D display (better that 9x9 cubes)
- Optimize: vol_dilate (with 26 neighbors)
- Magnetic extrapolation:
- Do the same thing with EEG
- Noise covariance matrix:
- Storage of multiple noise covariance matrices (just like the head models)
- Always save as full, then at inversion time, we can decide between full, heteroskedastic (diagonal) or homoskedastic (i.i.d, scalar)
Problem of having inividual trials + averages in the condition => Display warning or not?
- Save nAvg in noisecov file, to make it easier to scale to other recordings
When deploying to other conditions: Apply destination SSP (NoiseCov = SSP . NoiseCov . SSP' )
Sources on surface: Display peak regions over time (time = color) => A.Gramfort
- Simulation: synthesize pseudo data-files from a cortex patch (duration, amplitude, noise)
Calculate ImagingKernel * Gain for a scout
Anatomy
- Scouts:
- Mix constrained/unconstrained/volume sources, using the "Source model" atlas
- Display edges in the middle of the faces instead of the vertices
- Project scouts betweens subjects and between hemispheres
- Display scouts in a tree: hemisphere, region, subregion
- Downsample to atlas: allow on timefreq/connect files
- Generate mixed density surfaces
- Import / registration:
- Major bug when importing surfaces for an MRI that was re-oriented manually
- Use mid-gray instead of pial surface?
Statistics
- ANOVA: Use LENA functions
- Output = 1 file per effect, all grouped in a node "ANOVA"
- Display several ANOVA maps (from several files) on one single figure, using a "graphic accumulator", towards which one can send any type of graphic object
- Permutation tests:
- t-test only (wilcoxon? sign-test?): paired, equal var, unequal var
- nb permutations ~ 1000
- maximum statistic over "time" or "time and space"
- Permutations / clustering: cf fieldtrip
Threshold in time: keep only the regions that are significative for contiguous blocks of time, or over a certain number of time points
=> Process that creates a static representation of a temporal window- t-test on volume sources
- Create icons for Stat/PAC, Stat/Sprectrum, etc.
Input / output
- EEG File formats:
EEG CeeGraph
- EGI: Finish support for epoched files (formats 3,5,7)
FieldTrip structures: In / Out
- BCI2000 Input (via EEGLAB plugin)
Distribution & documentation
- Shortcuts:
Add Help buttons and menus (in popups, dialog windows...) => Links to the website.
- List of all the keyboard and mouse shortcuts
- Equivalents for MacOS
- Introduction tutorials:
- Estimate time to complete each tutorial
- Clusters
- First steps: Brainstorm preferences
- Headmodel: explain the fields + how to get the constrained leadfield
- Sources: Modelized data
- Sources: theshold min. size (not documented yet)
- Processes: Describe all the processes
- Import raw recordings: Add "detect bad trials/channels" in the pipeline
- Temporary folder
- Advanced tutorials:
- EEG (How to import an EEG cap)
- Epilepsy / spike analysis
Geeky programming details
- Use Matlab Coder to optimize some processes: Bandpass filter, sinusoid removal
- Hide Java panels instead of deleting them
- mri2scs: convert arguments to meters
- Waitbars: Add a "Cancel" button on waitbars when the bounds are defined (ie. when bst controls the process)
- Bug: Menu "Use default EEG cap" doesn't work for a multiple selection (setting the same EEG cap for several subjects)
- Bug tree_dependencies: sources files, reprojected on default anatomy; If based on data files that are bad trials, they should be ignored by tree_dependencies, and they are not
- bst_warp and channel_project: Use tess_parametrize_new instead of tess_parametrize
- Bug in_bst_data_multi: If trials have different sizes, output is random (the one of the first file)...
- Shared kernels: do the "get bad channels" operation in a different way (reading all the files is too slow)
- Optimize calls to bst_get, now study and subject have necessarily the same folder name
- Stat files: store tmap or pmap, not both
- Progress bar with different levels (to handle sub-processes)
- Progress bar: make work correctly with RAW on resting tutorial
- Line smoothing / anti-aliasing (time series figures)