10546
Comment:
|
28139
|
Deletions are marked like this. | Additions are marked like this. |
Line 4: | Line 4: |
== Current topics == ==== Functionnal connectivity ==== * Integration of different metrics to study the brain connectivity: <<BR>>Correlation, coherence, Granger causality, phase locking value * Development of new ways to represent the connectivity between sensors or brain regions ==== EEG / epilepsy / intra-cranial recordings ==== * New tools for exploring EEG recordings (custom montages, faster viewer) * Full EEG/epilepsy online tutorial * Editing the position of intracranial electrodes in the MRI viewer ==== Source modeling ==== * Computation of equivalent current dipoles * Beamformers ==== Large scale analysis ==== * Parallel processing: Reduce the computation times using the parallel processing toolbox * Distributed processing: Integrate tools for sending Brainstorm processes on computation clusters <<BR>><<BR>><<BR>> |
<<TableOfContents(2,2)>> |
Line 25: | Line 9: |
* RAW file viewer: | * RAW file viewer:<<BR>> * Bottom ar: display extend events as segments instead of dots (to see their extension) * Downsample before filtering? (attention to the filter design) * Add parameter to make the visual downsampling more or less aggressive |
Line 27: | Line 14: |
* Allow multiple RAW windows(columns display) * Screen setups * Time scale: define in fixed s/mm (like the CTF tools) * Secondary windows: display length of time selection * If "Use SSP " option is selected, automatically select "Remove baseline" and "CTF compensations" * Documentation: Add definition of bad segments * Set the amplidute scale for the time series * CTRL+S : Save modifications * RAW processing: * Make it work for all the file formats(at least bandpass filter) * Events: advanced process for recombining. Example: http://www.erpinfo.org/erplab/erplab-documentation/manual/Binlister.html * Improve interface for SSP on imported recordings * Bad channels that can be specified at the program level (for sites that have permanently bad channels) => AS Dubarry |
* Keep the filter specifications in memory instead of recomputing for every page * Add field "comment" to markers: For clinicians to add notes (Marcel) * Events: Change the category of a selected event easily, instead of deleting/marking new * Events: Advanced process for recombining.<<BR>>Example: http://www.erpinfo.org/erplab/erplab-documentation/manual/Binlister.html * EEG: Laplacian montage (see doc sent by Jeremy) * Bad trials: When changing the status of bad to good: remove the bad segments as well, otherwise it is not processed by processes like the PSD. * Review clinical recordings: Reduce the dimensionality of the data with a simple inverse problem, similar to what we do for the magnetic extrapolation ("Regional sources" in BESA, cf S Rampp) * MEG/EEG registration: Apply the same transformation to multiple runs * 2DLayout: * Does not work when DC offset is not removed * Add a proper amplitude scale that gets updated when shift+scroll, to compare figures * Create heat maps: Maybe with matlab function heatmap? == Interface == * Add a warning when computing a forward model with > 100000 sources (check selection) * Multiple screens: Add option to set on which display the main bst window should be * File filters: Add boolean logic: https://github.com/brainstorm-tools/brainstorm3/issues/68 * Snapshot: Save as image / all figures (similar to Movie/all figure) * Generalize the use of the units (field .DisplayUnits): Rewrite processes to save the units correctly |
Line 41: | Line 34: |
* Define manually minimum => 3 options: [0,max], [-max,max], [min,max] | * Allow brightness/contrast manipulations on the custom colormaps |
Line 43: | Line 36: |
* Grey out the portion of the colorbars not displayed because of the threshold * bst_selections: * Add user defined combinations of sensors (eg. "double banana" for EEG) * Use this to produce "inversed polarity" displayes too (useful in EEG) * Import data: * Save properties "baseline" and "resample" at the level of the protocol (to re-use for all the files) * NIRS: * Add new data type * Display of sensors by pairs oxy/deoxy (red/blue), overlaid * Intracranial electrodes: * Define and display in the MRI viewer * Images of amplitude: [sensor x time], [trial x time], scout: [trial x time] (similaire to erpimage in eeglab) |
* Global colormap max: Should get the maximum across all the open files * Set parula (or others) as the default, not jet: https://bids.github.io/colormap/ * https://jakevdp.github.io/blog/2014/10/16/how-bad-is-your-colormap/ * https://www.youtube.com/watch?v=xAoljeRJ3lU * Open new figures as tab (docked in the Figures window) * Copy figures to clipboard (with the screencapture function) * Display warning before opening files that are too big * Smooth display from figure_image (ERPimage, raster plot...) * Contact sheets & movies: use average of time windows instead of single instants, for each picture. * Contact sheets: Allow explicit list of times in input (+ display as in MNE-Python with TS) * Display CTF coils: Show discs instead of squares * Use boundary() instead of conhull() in all the display functions (ie. 2DDisc) |
Line 57: | Line 50: |
* Figures: interaction with sensor selection / scouts selections * Display NxN as 1xN * Adapt colormaps for correlation (min and max properties) * PLV: Add a time integration * Work on progress bars * Circle plot: * Display Neuromag sensors * Event-related coherence? |
* Thresholding and stat tests the connectivity matrices * Connectivity on unconstrained sources: "Default signal extraction for volume grids should be the time series of the first principal component of the triplet signals after each has been zero-meaned" (SB) * Display of connectivity graphs: * Display as straight lines * Recode 2D graphs * 3D display with anatomical constrains * Display using real position of EEG electrodes * Use new band-pass filters in bst_connectivity ('bst-hfilter' instead of 'bst-fft-fir') * Review by Jan-Mathijs: http://journal.frontiersin.org/article/10.3389/fnsys.2015.00175/full * Connectivity based on band limited power (Sylvain): * Compute Hilbert/Bandpass + correlation of the envelopes * Bandpass envelopes before computing correlations? * Compute Hilbert(sensors) and then project to source space? * Matrix view of NxN graphs: Add legend of the elements along X and Y axis * Graph view: * Does not display negative values correctly (correlation or difference of coherence) * Re-write using pure Matlab code and smoothed graphics * Fixed scales for intensity sliders * Text bigger * Too much data in appdata * Fixed scales for intensity sliders * Add "=" shortcut for having graphs with similar configurations * Disable zoom in one region (serious bugs) * NxN on sensors: does not place the sensors correctly in space * Coherence: * Average cross-spectra instead of concatenating epochs (to avoid discontinuities)<<BR>>Explore inter-trial approaches (Esther refers to chronux toolbox) * Granger: * Crashes sometimes: improve stability * Check for minimum time window (Esther: min around 500-1000 data points) * Re-write and optimize code * Add progress bar * PLV: * Add p-values * Remove evoked * Optimize code * Add time integration * Unconstrained sources * Add warning when running of short windows (because of filters) * PAC: * Add input TF , to disconnect TF decomposition and PAC computation (Peter) * Refine frequency vector of low frequencies * How many central frequencies to use in bst_pac? * Change filters: no chirplet functions * bst_freqfilter: Use nfcomponents like in bst_pac * Esther recommended a larger frequency binning of the PAC estimation * PAC maps: Display all sensors at once (like TF and DynamicPAC) * Hui-Ling's PAC: * https://bsp.hackpad.com/Cross-Frequency-Coupling-cChe95lhDHz * https://github.com/NCTU-BSP/MEEG * Time-resolved correlation/coherence: Display as time bands * Other metrics: * Coherence by bands: bst_coherence_band_welch.m * Granger by bands: bst_granger_band.m * Inter-trial coherence * Tutorial coherence [1xN] : Reproduce FieldTrip results? * Connect NxN: Display as time series > Display warning before trying to open too many signals |
Line 67: | Line 108: |
* Use CUDA for speeding up some operations (filtering, wavelets, etc) * Allow processes in Python and Java * Add MNE-Python functions: * scikit-learn classifiers: S Marti / G Dehaene * Implement data exchange with MNE-Python: write FIF files from Brainstorm and/or pass python objects in memory instead of FIF files * SSS/tSSS cleaning * Reproduce other tutorials / examples * Change the graphic renderer from Matlab * Add FieldTrip functions: * ft_sourceanalysis: * Check noise covariance * Check all the options of all the methods * Single trial reconstructions + noise covariance? * Filters?? http://www.fieldtriptoolbox.org/example/common_filters_in_beamforming * Beamformers: Save ftSource.avg.mom <<BR>>http://www.fieldtriptoolbox.org/workshop/meg-uk-2015/fieldtrip-beamformer-demo * http://www.natmeg.se/ft_beamformer/beamformer.html * http://www.fieldtriptoolbox.org/tutorial/beamformingextended * Baseline? Two inputs? * ft_prepare_sourcemodel: Compute MNI transformation (linear and non-linear) => Peter * Freqanalysis: ITC * ft_read_atlas('TTatlas+tlrc.BRICK'); * ft_volumereslice: http://www.fieldtriptoolbox.org/faq/how_change_mri_orientation_size_fov * ft_freqanalysis * ft_combineplanar * Allow FieldTrip functions in compiled version * Decoding/Classifiers: Faster algorithms (MNE-Python?) * Pipeline editor: * Bug: After "convert to continuous", the time of the following processes should change * Add loops over subjects/conditions/trial groups * Events: Allow selection from a drop-down list (similar to option "channelname" in panel_process_selection) * ITC: Inter-trial coherence (see MNE reports for group tutorial)<<BR>>http://www.sciencedirect.com/science/article/pii/S1053811916304232 * ICA: * Why doesn't the ICA process converge when using 25 components in the EEG tutorial? * Add an option to resample the signals before computing the ICA decomposition * Add a stand-alone tutorial * Exploration: Add window with spectral decomposition (useful for muscle artifacts) * Export IC time series (and then compute their spectrum): solves the problem above * Comparison JADE/Infomax: <<BR>> http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030135 * Use faster methods (MNE-Python?) * Add methods: SOBI, Fastica, AMICA/CUDICA (recommended by S Makeig) * Dimension reduction with PCA adds artifacts: Not done by default in EEGLAB<<BR>>Contact: Stephen Shall Jones ( shall-jones@infoscience.otago.ac.nz )<<BR>>Student Carl Leichter detailed this in his thesis * S Makeig: Use ICA to select the IC of interest instead of only removing artifacts * Display of spectrum for components (PSD/FFT) * Use FastICA (algo crashing) * Add components preselection: Correlation with EOG/ECG * Import ICA matrices available in EEGLAB .set files * EEGLAB recommends ICA + trial rejection + ICA again: Impossible right now with Brainstorm<<BR>>(http://sccn.ucsd.edu/wiki/Chapter_09:_Decomposing_Data_Using_ICA) * ICA+machine learning: https://www.ncbi.nlm.nih.gov/pubmed/28497769 * Automated artifact rejection: https://arxiv.org/abs/1612.08194 * Save IC time series in database * Use EYE-EEG: EEGLAB toolbox for eye-tracker guided ICA (Olaf Dimigen): http://www2.hu-berlin.de/eyetracking-eeg/ * Other EEGLAB functions: * Step function detection: https://github.com/lucklab/erplab/wiki/Artifact-Detection:-Tutorial * SSP: * Display warning if changing the ChannelFlag while there is a Projector applied * Show where the attenuation is projected:<<BR>>(sum(IK,2)-sum(SSP(k,:)*IK,2)./sum(IK,2) * Pipeline editor: * When computing sources from the pipeline editor: doesn't reselect the options if you click twice on "edit" (works for minnorm, but not for lcmv) * When computing time-frequency/hilbert/psd: Find a way not to force the user to click on Edit * Bandpass: * Use new filters in all the functions using a bandpass ('bst-hfilter' instead of 'bst-fft-fir'): process_evt_detect_threshold * Weird bug: Filter(import) != Import(Filter) in the HCP tutorial... to investigate * Bandpass * Spectral flattening (John): * ARIMA(5,0,1): Apply on the signal before any frequency/connectivity/PAC analysis * PSD: * Rewrite to have the same input as coherence (frequency resolution instead of window length) * Use the progress bar * Allow display of Avg+StdErr * Remove line noise: http://www.nitrc.org/projects/cleanline * Use Matlab Coder to optimize some processes: Wavelets, bandpass filter, sinusoid removal * Reports: Click on link reopens exactly the figure |
|
Line 68: | Line 185: |
* Frequency bands: extended syntax (ex: [2 3 4], 10:5:90, ...) * Scouts values for timefreq on surfaces * How to combine 3 orientations for unconstrained sources * Display logs as negative |
* Optimization: bst_timefreq (around l.136), remove evoked in source space: Average should be computed in sensor space instead of source space (requested by Dimitrios) * Short-time Fourier transform: http://www.mikexcohen.com/lectures.html * Matching pursuit: http://m.jneurosci.org/content/36/12/3399.abstract?etoc * Bug: Display logs as negative * Bug: 3D figures: Colormaps with "log" option doesn't work * Bug: Difference of power displayed in log: problems (Soheila) |
Line 74: | Line 193: |
* Parallel processing: Use parfor * Distributed processing: * Version of Brainstorm that can run without JAVA * Use the BIC/MEG cluster from the pipeline interface (PSOM, P.Bellec) * SSP: * Display warning if changing the !ChannelFlag while there is a Projector applied * When processing multiple files: waitbar is not behaving well * Average: * Remember how many trials were used per channel * Save standard deviation * Display standard deviation as a halo around the time series |
* TF scouts: should display average of TF maps * Impossible to keep complex values for unconstrained sources * Pad short epochs with zero values for getting lower frequencies * Hilbert with time bands very slow on very long files (eg. 3600s at 1000Hz) because the time vector is still full (10^7 values): save compressed time vector instead. * Extend clusters tab to display of TF to overlay TF signals (Svet) * When normalizing with baseline: Propagate with the edge effects marked in TFmask * Allow running TF on montages * Review continuous files in time-frequency space (for epilepsy) * Bug when computing TF on constrained and unconstrained scouts at the same time (in mixed head models for instance): uses only the constrained information and doesn't sum the 3 orientations for the unconstrained regions. * Artifact detection: * Artifact rejection like SPM: if bad in 20%, bad everywhere * Test difference between adjacent samples * Events detection: Add option "std" vs "amplitude" |
Line 88: | Line 209: |
* Apply to continuous recordings for correcting for head movements (using head position coils) * Current Source Density (CSD) => Ghislaine<<BR>>http://psychophysiology.cpmc.columbia.edu/software/CSDtoolbox/index.html * Other processes: * Moving average * Max * Median * Significance test (Dimitrios, Leo) * Spatial smoothing: check / document parameters * Contact sheets & movies: use average of time windows instead of single instants, for each picture. |
* Apply to continuous recordings for correcting head movements * Simulation: * Fix units in simulation processes => no *1e-9 in "simulate recordings" * Use "add noise" process from Hui-Ling (in Work/Dev/Divers) * Use field process field "Group" to separate Input/Processing/Output options * Use new Matlab functions: movmean, movsum, movmedian, movmax, movmin, movvar, movstd * Process ft_prepare_heamodel: Add support from BEM surfaces from the Brainstorm database |
Line 99: | Line 218: |
* Filter display of the database explorer (filename, file type, comment...) | * Add buttons to sort files: by name, by comment, by date |
Line 101: | Line 220: |
* GUI: Save configuration of windows (per protocol) | * Matrix files: Allow to be dependent from other files |
Line 105: | Line 224: |
* Screen captures: save straight to the database * Rename multiple files * Default headmodel lost when reloaded: Keep selection on the hard drive (in brainstormstudy.mat) * Auto-save: * protocol.mat can be too big: do not store the results links in it (and recreate when loading)- http://neuroimage.usc.edu/forums/t/abnormally-slow-behavior/2065/10 * Improve auto-save: add tracking file next to protocol.mat, do not save all the time, only when closing app, and reload protocol at stratup if tracking file is still there == Distributed computing == * Options from FieldTrip: * Loose collection of computers: https://github.com/fieldtrip/fieldtrip/tree/master/peer * Alternative, with less limitations: http://research.cs.wisc.edu/htcondor/ * Single multicore machine: https://github.com/fieldtrip/fieldtrip/tree/master/engine * Batch system: https://github.com/fieldtrip/fieldtrip/tree/master/qsub * Documentation: http://fieldtrip.fcdonders.nl/faq#distributed_computing_with_fieldtrip_and_matlab * PSOM: http://psom.simexp-lab.org/ * Various initiatives: http://samirdas.github.io/Data_sharing.html#/ |
|
Line 106: | Line 246: |
* Dipole fitting * Scouts: * Represent border as the middle of the adjacent triangles (to have a full segmentation) * Visualize Beamformer results (contact Zainab Fatima): |
* Project sources: Very poor algorithm to project sub-cortical regions and cerebellum (algorithm to fit surfaces should be imrpoved) * Menu head model > Copy to other conditions/subjects (check if applicable first) * Menu Sources > Maximum value: Doesn't work with volume or mixed head models * Mixed head models: <<BR>> * Set loose parameter from the interface * Volume grid: * Optimize: 3D display (better than 9x9 cubes) * Optimize: vol_dilate (with 26 neighbors) * Menu Sources > Simulate recordings: * Do not close the 3D figures after generating a new file * Add a process equivalent to this menu * Panel Get coordinates: Add button "find maximum" * Dipoles: * Project individual dipoles files on a template * panel_dipoles: Doesn't work with multiple figures * BEM single sphere: Get implementation from MNE * Visualize Beamformer results: |
Line 111: | Line 264: |
* Create new file type in the database | |
Line 114: | Line 266: |
* Compute unconstrained and then project on the normal ? * Define as default * Check all the processes * Difference and stat should be: norm(A) - norm(B) |
* Stat and connectivity: what to do? (re-send email John+Sylvain) |
Line 119: | Line 268: |
* Volume grid: * Scouts 3D * Test volume sources with all the subsequent processes (timefreq, stat...) * Optimize: 3D display (better that 9x9 cubes) * Optimize: vol_dilate (with 26 neighbors) * Optimize: grid_interp_mri * Magnetic extrapolation: * Do the same thing with EEG * Project sources: * Adapt smooth factor to the number of vertices * Number of neighbors to consider = average number of neighbors in the target mesh. * Compute by small time blocks |
* Magnetic extrapolation: Do the same thing with EEG |
Line 132: | Line 270: |
* Display with figure_image() | |
Line 136: | Line 275: |
* When deploying to other conditions: Apply destination SSP (!NoiseCov = SSP . !NoiseCov . SSP' ) | |
Line 138: | Line 276: |
* Simulation: synthesize pseudo data-files from a cortex patch (duration, amplitude, noise) * Calculate !ImagingKernel * Gain for a scout |
* Calculate ImagingKernel * Gain for a scout * Time-frequency beamformers: * Band-pass everything in different frequency bands + Source estimation + TF * Ask data to Sarang where he sees effects that cannot be extracted with MN followed by TF * Process "Extract scouts time series": Add PCA option (replace isnorm with choice PCA/Norm) * BEM: Fix unstable results when one vertex is too close from the layers (5mm ?) * Hui-Ling beamformers: * More explanations about what is in NAI and Spatial filters * Explain that is this is better to study effects extended in time (Ntime > Nsensors) * Group LCMV+MCB * Condition LEFT median nerve: very bad results * Keep options for inverse computation * OpenMEEG: Post example datasets for the remaining issues: * https://github.com/openmeeg/openmeeg/issues/64 * https://github.com/openmeeg/openmeeg/issues/68 * Example protocol ECOG: doesn't work * Add eyes models to attract eye activity |
Line 142: | Line 295: |
* Use the !FreeSurfer subject co-registration (downsample: keep the correspondance) * Import / registration: * Improve ICP registration headpoints / scalp (chanfrein, multi-resolution, see with C Grova...) * Auto-reorientation of MRI after selected NAS / LPA / RPA * Major bug when importing surfaces for an MRI that was re-oriented manually * ICBM brain * MINC MRI reader: EMMA, NIAK (Pierre Bellec), HDF5 directly read in Matlab * ICBM average surfaces + atlas * Using CIVET pipeline for extracting surfaces * Clustering cortex: Dimitrios, David, Yu-Teng |
* BrainVISA: Add support for MarsAtlas * Registration: * Getting electrode positions from 3D scanners: https://sccn.ucsd.edu/wiki/Get_chanlocs * GARDEL: http://meg.univ-amu.fr/wiki/GARDEL:presentation * Use the same registration for multiple recording sessions that have already re-registered previously (eg. with MaxFilter) * When linking multiple EEG recordings including 3D positions, do the registration only once and copy it to all the runs * Check templates: MNI transformation and volume atlases for ICBM152 vs Colin27 (loading the AAL atlas as surface or voume scouts do not align well on the ICBM152) * Compute non-linear MNI registration instead of linear * Select and remove bad digitized head points before automatic coregistration * Load the MNE -transf.fif: http://neuroimage.usc.edu/forums/showthread.php?2830 * MRI Viewer: * Add display of "world coordinates" when "vox2ras" is available * Pan in zoomed view (shift + click + move?) * Zoom in/out with mouse (shift + scroll?) * Ruler tool to measure distances * Add keyboard shortcuts to scroll in the three orientations (same in MRI 3D) * Display scouts as additional volumes * Render surface envelope in the MRI as a thin line instead of the full interpolation matrix * Edit fiducials: Replace 6 text boxes with 1 for easy copy-paste (see fiducials.m) * Optimize computation interpolation MRI-surface (tess_tri_interp) => spm_mesh_to_grid * BrainSuite: * Add new labels to all BrainSuite anatomy templates * Use BrainSuite inner skull for surface generation * Use same colors for left and right for anatomical atlases * Scouts: * Display edges in the middle of the faces instead of the vertices * Display scouts in a tree: hemisphere, region, subregion * Sort scouts by region in process options * Downsample to atlas: allow on timefreq/connect files * Project from one hemisphere to the other using registered spheres/squares (http://neuroimage.usc.edu/forums/t/how-to-create-mirror-roi-in-the-other-hemisphere/5910/8) * Parcellating volume grids: scikit-learn.cluster.Ward * Major bug when importing surfaces for an MRI that was re-oriented manually * Smooth surface: Fix little spikes due to irregularities in the mesh * Bug: Hide scouts in the preview of the grid for volume head models == ECOG/SEEG == * Electrode models: Better way for managing/updating/adding electrode models * Contact positions: Import / set / detect<<BR>> * Add history: Save modifications and transformations applied to the channel files (Marcel) * ECOG: How to handle cases where not all the grid contacts are in the channel file? (Marcel) * Project contact positions across subjects or templates (Marcel) * ECOG: Default names of contacts? * Add menu to import implantation channel file in imported recordings * Automatic segmentation of CT: * GARDEL: http://meg.univ-amu.fr/wiki/GARDEL:presentation * Arnulfo: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0511-6 * MAP07 / SPM: https://www.epi.ch/_files/Artikel_Epileptologie/Huppertz_2_13.pdf * ECOG: Project and display contacts on cortex surface should consider the rigidity of the grids: Contacts cannot rotate, and distance between contacts should remain constant across runs * ECOG: Method for contacts projection: https://pdfs.semanticscholar.org/f10d/6b899d851f3c4b115404298d7b997cf1d5ab.pdf * ECOG: Brain shift: When creating contact positions on a post-implantation image, the brain shift should be taken into account for creating images of the ECOG contacts on the pre-op brain => iELVis (http://ielvis.pbworks.com/w/page/116347253/FrontPage) * Display: * Bad channels: Contacts greyed out instead of ignored (Marcel) * Display time in H:M:S * Display curved SEEG electrodes * Re-referencing: * Create new average reference montages with a specific list of channels, with the possibility to edit the order of the channels (for Jeremy) * Closest white reference (Arnulfo) * Detection CEEP stim artifacts: Use ImaGIN code ImaGIN_StimDetect * Alternatives to OpenMEEG: SimBio/FieldTrip? Matti Stenroos? NFT/NIST? |
Line 155: | Line 356: |
* ANOVA: Use LENA functions | * ANOVA: * Use LENA functions(?) |
Line 158: | Line 360: |
* Permutation tests: * t-test only (wilcoxon? sign-test?): paired, equal var, unequal var * nb permutations ~ 1000 * maximum statistic over "time" or "time and space" * Permutations / clustering: cf fieldtrip * http://fieldtrip.fcdonders.nl/tutorial/cluster_permutation_timelock * http://fieldtrip.fcdonders.nl/tutorial/cluster_permutation_freq * Threshold in time: keep only the regions that are significative for contiguous blocks of time, or over a certain number of time points<<BR>> => Process that creates a static representation of a temporal window |
* New process to test for Gaussianity using swtest * Simulate recordings with specific properties, for stat validation * Quality control before statistics, on condition averages across subjects:<<BR>>mean(baseline)/std(baseline): shows bad subject quickly. * Use SurfStat: Impements interesting things, like an analytical cluster-based p-value correction (Random-field theory which is used in SPM) - Peter |
Line 168: | Line 367: |
* MRI: MINC format | * '''XDF import''': Use the EEGLAB plugin, contact Martin Bleichner (Oldenburg) * Output .nii have incorrect sform/qform when using the options to downsample the volume of cut the empty slices * DICOM converter: * Add dcm2nii (MRICron) * Add MRIConvert * FieldTrip: Import/Export time-frequency: * Export: http://neuroimage.usc.edu/forums/t/export-time-frequency-to-fieldtrip/1968 * Import: http://neuroimage.usc.edu/forums/t/import-time-frequency-data-from-fieldtrip/2644 * 4D file format: * Use reader from MNE-Python: mne.io.read_raw_kit (doesn't require Yokogawa slow library) * Reference gradiometers: Keep the orientation of the first or second coil? * Reference gradiometers: Add the sensor definition from coil_def.dat * Validate with phantom recordings that noise compensation is properly taken into account * References at too far from the head sensors in Marseille 4D system * The noise compensation is considered to be always applied on the recordings, not sure this assumption is always correct * 4D phantom tutorial (JM Badier?) |
Line 170: | Line 384: |
* EEG !CeeGraph * NEUROFILE = COHERENCE EEG/video !LongTerm Monitoring |
* EEG CeeGraph |
Line 173: | Line 386: |
* !FieldTrip structures: In / Out | * XLTEK: https://github.com/danielmhanover/OpenXLT * Persyst .lay: https://github.com/ieeg-portal/Persyst-Reader * Nervus .eeg: https://github.com/ieeg-portal/Nervus-Reader * Biopac .acq: https://github.com/ieeg-portal/Biopac-Reader * gTec EEG recordings: Read directly from the HDF5 files instead of the Matlab exports. |
Line 175: | Line 392: |
* !FreeSurfer: orig.mgz | * EEGLAB import: * Support for binary AND epoched files (now it's one or the other) * Allow epoched files with recordings saved in external files * BST-BIN: Add compressionto .bst * Review raw on all the file formats (ASCII EEG and Cartool missing) * SPM .mat/.dat: Fix the import of the EEG/SEEG coordinates * Get acquisition date from files: Missing for 4D |
Line 178: | Line 401: |
* Shortcuts: * Add Help buttons and menus (in popups, dialog windows...) => Links to the website. * List of all the keyboard and mouse shortcuts * Equivalents for MacOS * Introduction tutorials: * Estimate time to complete each tutorial * Clusters * First steps: Brainstorm preferences * Headmodel: explain the fields + how to get the constrained leadfield * Sources: Modelized data * Sources: theshold min. size (not documented yet) * Processes: Describe all the processes * Processes: How to write your own processes (user folder for processes) * Import raw recordings: Add "detect bad trials/channels" in the pipeline * Temporary folder * How to export sources for analysis in SPM * Advanced tutorials: * EEG (How to import an EEG cap) * Epilepsy / spike analysis * How to make and compress a movie (Brainstorm + !VirtualDub + XVid) * Ask users to send their channel files, align on Colin, distribute |
* Compile with FieldTrip and SPM * Add tags to the forum posts for easier listing by topic * Tutorial OMEGA/BIDS: * Add review of literature for the resting state MEG * Download example datasets directly from the OMEGA repository * New tutorials: <<BR>> * Other public datasets: [[https://github.com/INCF/BIDS-examples/tree/bep008_meg|https://github.com/INCF/BIDS-examples/tree/bep008_meg/]] * Rat PAC + high gamma (Soheila) * EEG/research * FieldTrip ECOG tutorial: http://www.fieldtriptoolbox.org/tutorial/human_ecog * FieldTrip cortico-muscular coherence tutorial: http://www.fieldtriptoolbox.org/tutorial/coherence * Reproduce tutorials from MNE-Python: https://martinos.org/mne/stable/tutorials.html * Cam-CAN database: https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/<<BR>>(download new datasets, including maxfiltered files and manual fiducial placements) * MEG steady-state / high-gamma visual / frequency tagging * BIDS-EEG example datasets * Stand-alone ICA tutorial * Co-register MEG runs (Beth) * Move all the files to download on the cloud for faster download everywhere in the world * Provide secure way of sending password over HTTPS for: * Account creation * Forum exchanges * org.brainstorm.dialog.CloneControl * Workflows FieldTrip: http://www.fieldtriptoolbox.org/faq/what_types_of_datasets_and_their_respective_analyses_are_used_on_fieldtrip * Count GitHub clones in the the download stats * Google Analytics: Create template and update the section of the Community page * Missing in page "Cite Brainstorm": Add all the methods used in the software * Deface the MRIs of all the tutorials * Compiled R2016b: Color picker doesn't work (for changing surface color for instance) == Current bugs == * Screen capture: * Bug on Win8/Win10: doesn't capture the correct part of the screen * Window managers with fading effect: captures the top window * Image viewer: * Difficult to get to 100% * Buggy on some systems * 2DLayout: * (TF) Units are weird with % values * (TF) Difficult to navigate in frequencies: Scaling+changing frequency resets the scaling * Progress bar: * Doesn't close properly on some Linux systems * Focus requests change workspace when processing constantly (Linux systems) * MacOS bugs: * Buttons {Yes,No,Cancel} listed backwards * Record tab: Text of epoch number is too big * Colormap menus: Do not work well on compiled MacOSX 10.9.5 and 10.10 * Matlab bugs: * Interface looks small on screens with very high resolutions: Reduce the resolution * Event markers are not visible anymore with the sequence: Open MEG, open EOG, close MEG * in_bst_data_multi: If trials have different sizes, output is random (the one of the first file) * Edit scout in MRI: small modifications cause huge increase of the scout size * Canolty maps computation: Fix progress bar |
Line 201: | Line 458: |
* Cleaning surfaces: should work with atlases | * bst_bsxfun: After 2016b, we can use directly the scalar operators (./ .* ...) instead of bsxfun. Update bst_bsxfun to skip the use of bsxfun when possible. * Interface scaling: Rewrite class IconLoader to scale only once the icons at startup instead of at each request of an icon (might improve the speed of the rendering of the tree) |
Line 203: | Line 461: |
* mri2scs: convert arguments to meters * Zip files created cannot be open with !WinZip * Waitbars: * Replace old waitbars with java ones * Add a "Cancel" button on waitbars when the bounds are defined (ie. when bst controls the process) * Bug: Menu "Use default EEG cap" doesn't work for a multiple selection (setting the same EEG cap for several subjects) * Bug tree_dependencies: sources files, reprojected on default anatomy; If based on data files that are bad trials, they should be ignored by tree_dependencies, and they are not |
* Processes with "radio" and "radio_line" options: Replace with "radio_label" and "radio_linelabel" * Interpolations: Use scatteredInterpolant, griddedInterpolant, triangulation.nearestNeighbor (2014b) |
Line 211: | Line 464: |
* Bug in_bst_data_multi: If trials have different sizes, output is random (the one of the first file)... * Shared kernels: do the "get bad channels" operation in a different way (reading all the files is too slow) * Write shepards.m with new algorithm for nearest neighbors * Use Matlab Coder to compile / optimize some processes * Optimize calls to bst_get, now study and subject have necessarily the same folder name |
* Shared kernels: "get bad channels" operation in a different way (reading all the files is too slow) * Optimize bst_get: * Now study and subject have necessarily the same folder name * Replace big switch with separate functions * Progress bar: * Add different levels (to handle sub-processes) * Make work correctly with RAW on resting tutorial * Uniformize calls in bst_process/Run * Add a "Cancel" button * Fix all the 'todo' blocks in the code * Error message: Add a link to report directly the bug on the forum |
What's next
A roadmap to the future developments of Brainstorm.
Contents
Recordings
RAW file viewer:
- Bottom ar: display extend events as segments instead of dots (to see their extension)
- Downsample before filtering? (attention to the filter design)
- Add parameter to make the visual downsampling more or less aggressive
- Pre-load next page of recordings
- Keep the filter specifications in memory instead of recomputing for every page
- Add field "comment" to markers: For clinicians to add notes (Marcel)
- Events: Change the category of a selected event easily, instead of deleting/marking new
Events: Advanced process for recombining.
Example: http://www.erpinfo.org/erplab/erplab-documentation/manual/Binlister.html
- EEG: Laplacian montage (see doc sent by Jeremy)
- Bad trials: When changing the status of bad to good: remove the bad segments as well, otherwise it is not processed by processes like the PSD.
- Review clinical recordings: Reduce the dimensionality of the data with a simple inverse problem, similar to what we do for the magnetic extrapolation ("Regional sources" in BESA, cf S Rampp)
- MEG/EEG registration: Apply the same transformation to multiple runs
- 2DLayout:
- Does not work when DC offset is not removed
- Add a proper amplitude scale that gets updated when shift+scroll, to compare figures
- Create heat maps: Maybe with matlab function heatmap?
Interface
Add a warning when computing a forward model with > 100000 sources (check selection)
- Multiple screens: Add option to set on which display the main bst window should be
File filters: Add boolean logic: https://github.com/brainstorm-tools/brainstorm3/issues/68
- Snapshot: Save as image / all figures (similar to Movie/all figure)
Generalize the use of the units (field .DisplayUnits): Rewrite processes to save the units correctly
- Colormaps:
- Allow brightness/contrast manipulations on the custom colormaps
- Create a colormap similar to MNE, where extrema are bright
- Global colormap max: Should get the maximum across all the open files
Set parula (or others) as the default, not jet: https://bids.github.io/colormap/
https://jakevdp.github.io/blog/2014/10/16/how-bad-is-your-colormap/
- Open new figures as tab (docked in the Figures window)
- Copy figures to clipboard (with the screencapture function)
- Display warning before opening files that are too big
- Smooth display from figure_image (ERPimage, raster plot...)
Contact sheets & movies: use average of time windows instead of single instants, for each picture.
- Contact sheets: Allow explicit list of times in input (+ display as in MNE-Python with TS)
- Display CTF coils: Show discs instead of squares
- Use boundary() instead of conhull() in all the display functions (ie. 2DDisc)
Connectivity
- Thresholding and stat tests the connectivity matrices
- Connectivity on unconstrained sources: "Default signal extraction for volume grids should be the time series of the first principal component of the triplet signals after each has been zero-meaned" (SB)
- Display of connectivity graphs:
- Display as straight lines
- Recode 2D graphs
- 3D display with anatomical constrains
- Display using real position of EEG electrodes
- Use new band-pass filters in bst_connectivity ('bst-hfilter' instead of 'bst-fft-fir')
Review by Jan-Mathijs: http://journal.frontiersin.org/article/10.3389/fnsys.2015.00175/full
- Connectivity based on band limited power (Sylvain):
- Compute Hilbert/Bandpass + correlation of the envelopes
- Bandpass envelopes before computing correlations?
- Compute Hilbert(sensors) and then project to source space?
- Matrix view of NxN graphs: Add legend of the elements along X and Y axis
- Graph view:
- Does not display negative values correctly (correlation or difference of coherence)
- Re-write using pure Matlab code and smoothed graphics
- Fixed scales for intensity sliders
- Text bigger
- Too much data in appdata
- Fixed scales for intensity sliders
- Add "=" shortcut for having graphs with similar configurations
- Disable zoom in one region (serious bugs)
- NxN on sensors: does not place the sensors correctly in space
- Coherence:
Average cross-spectra instead of concatenating epochs (to avoid discontinuities)
Explore inter-trial approaches (Esther refers to chronux toolbox)
- Granger:
- Crashes sometimes: improve stability
- Check for minimum time window (Esther: min around 500-1000 data points)
- Re-write and optimize code
- Add progress bar
- PLV:
- Add p-values
- Remove evoked
- Optimize code
- Add time integration
- Unconstrained sources
- Add warning when running of short windows (because of filters)
- PAC:
- Add input TF , to disconnect TF decomposition and PAC computation (Peter)
- Refine frequency vector of low frequencies
- How many central frequencies to use in bst_pac?
- Change filters: no chirplet functions
- bst_freqfilter: Use nfcomponents like in bst_pac
- Esther recommended a larger frequency binning of the PAC estimation
- PAC maps: Display all sensors at once (like TF and DynamicPAC)
- Hui-Ling's PAC:
- Time-resolved correlation/coherence: Display as time bands
- Other metrics:
- Coherence by bands: bst_coherence_band_welch.m
- Granger by bands: bst_granger_band.m
- Inter-trial coherence
Tutorial coherence [1xN] : Reproduce FieldTrip results?
Connect NxN: Display as time series > Display warning before trying to open too many signals
Processes
- Use CUDA for speeding up some operations (filtering, wavelets, etc)
- Allow processes in Python and Java
- Add MNE-Python functions:
- scikit-learn classifiers: S Marti / G Dehaene
- Implement data exchange with MNE-Python: write FIF files from Brainstorm and/or pass python objects in memory instead of FIF files
- SSS/tSSS cleaning
- Reproduce other tutorials / examples
- Change the graphic renderer from Matlab
Add FieldTrip functions:
- ft_sourceanalysis:
- Check noise covariance
- Check all the options of all the methods
- Single trial reconstructions + noise covariance?
Filters?? http://www.fieldtriptoolbox.org/example/common_filters_in_beamforming
Beamformers: Save ftSource.avg.mom
http://www.fieldtriptoolbox.org/workshop/meg-uk-2015/fieldtrip-beamformer-demohttp://www.fieldtriptoolbox.org/tutorial/beamformingextended
- Baseline? Two inputs?
ft_prepare_sourcemodel: Compute MNI transformation (linear and non-linear) => Peter
- Freqanalysis: ITC
- ft_read_atlas('TTatlas+tlrc.BRICK');
ft_volumereslice: http://www.fieldtriptoolbox.org/faq/how_change_mri_orientation_size_fov
- ft_freqanalysis
- ft_combineplanar
Allow FieldTrip functions in compiled version
- ft_sourceanalysis:
- Decoding/Classifiers: Faster algorithms (MNE-Python?)
- Pipeline editor:
- Bug: After "convert to continuous", the time of the following processes should change
- Add loops over subjects/conditions/trial groups
- Events: Allow selection from a drop-down list (similar to option "channelname" in panel_process_selection)
ITC: Inter-trial coherence (see MNE reports for group tutorial)
http://www.sciencedirect.com/science/article/pii/S1053811916304232- ICA:
- Why doesn't the ICA process converge when using 25 components in the EEG tutorial?
- Add an option to resample the signals before computing the ICA decomposition
- Add a stand-alone tutorial
- Exploration: Add window with spectral decomposition (useful for muscle artifacts)
- Export IC time series (and then compute their spectrum): solves the problem above
Comparison JADE/Infomax:
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030135- Use faster methods (MNE-Python?)
- Add methods: SOBI, Fastica, AMICA/CUDICA (recommended by S Makeig)
Dimension reduction with PCA adds artifacts: Not done by default in EEGLAB
Contact: Stephen Shall Jones ( shall-jones@infoscience.otago.ac.nz )
Student Carl Leichter detailed this in his thesis- S Makeig: Use ICA to select the IC of interest instead of only removing artifacts
- Display of spectrum for components (PSD/FFT)
- Use FastICA (algo crashing)
- Add components preselection: Correlation with EOG/ECG
- Import ICA matrices available in EEGLAB .set files
EEGLAB recommends ICA + trial rejection + ICA again: Impossible right now with Brainstorm
(http://sccn.ucsd.edu/wiki/Chapter_09:_Decomposing_Data_Using_ICA)ICA+machine learning: https://www.ncbi.nlm.nih.gov/pubmed/28497769
Automated artifact rejection: https://arxiv.org/abs/1612.08194
- Save IC time series in database
Use EYE-EEG: EEGLAB toolbox for eye-tracker guided ICA (Olaf Dimigen): http://www2.hu-berlin.de/eyetracking-eeg/
- Other EEGLAB functions:
Step function detection: https://github.com/lucklab/erplab/wiki/Artifact-Detection:-Tutorial
- SSP:
Display warning if changing the ChannelFlag while there is a Projector applied
Show where the attenuation is projected:
(sum(IK,2)-sum(SSP(k,:)*IK,2)./sum(IK,2)
- Pipeline editor:
- When computing sources from the pipeline editor: doesn't reselect the options if you click twice on "edit" (works for minnorm, but not for lcmv)
- When computing time-frequency/hilbert/psd: Find a way not to force the user to click on Edit
- Bandpass:
- Use new filters in all the functions using a bandpass ('bst-hfilter' instead of 'bst-fft-fir'): process_evt_detect_threshold
- Weird bug: Filter(import) != Import(Filter) in the HCP tutorial... to investigate
- Bandpass
- Spectral flattening (John):
- ARIMA(5,0,1): Apply on the signal before any frequency/connectivity/PAC analysis
- PSD:
- Rewrite to have the same input as coherence (frequency resolution instead of window length)
- Use the progress bar
Allow display of Avg+StdErr
Remove line noise: http://www.nitrc.org/projects/cleanline
- Use Matlab Coder to optimize some processes: Wavelets, bandpass filter, sinusoid removal
- Reports: Click on link reopens exactly the figure
- Time-frequency:
- Optimization: bst_timefreq (around l.136), remove evoked in source space: Average should be computed in sensor space instead of source space (requested by Dimitrios)
Short-time Fourier transform: http://www.mikexcohen.com/lectures.html
Matching pursuit: http://m.jneurosci.org/content/36/12/3399.abstract?etoc
- Bug: Display logs as negative
- Bug: 3D figures: Colormaps with "log" option doesn't work
- Bug: Difference of power displayed in log: problems (Soheila)
- 2D Layout in spectrum
- Make much faster and more memory efficient (C functions coded by Matti ?)
- TF scouts: should display average of TF maps
- Impossible to keep complex values for unconstrained sources
- Pad short epochs with zero values for getting lower frequencies
- Hilbert with time bands very slow on very long files (eg. 3600s at 1000Hz) because the time vector is still full (10^7 values): save compressed time vector instead.
- Extend clusters tab to display of TF to overlay TF signals (Svet)
- When normalizing with baseline: Propagate with the edge effects marked in TFmask
- Allow running TF on montages
- Review continuous files in time-frequency space (for epilepsy)
- Bug when computing TF on constrained and unconstrained scouts at the same time (in mixed head models for instance): uses only the constrained information and doesn't sum the 3 orientations for the unconstrained regions.
- Artifact detection:
- Artifact rejection like SPM: if bad in 20%, bad everywhere
- Test difference between adjacent samples
- Events detection: Add option "std" vs "amplitude"
- Co-registration of MEG runs:
- SSP: Group projectors coming from different files
- Finish validation of the method
- Apply to continuous recordings for correcting head movements
- Simulation:
Fix units in simulation processes => no *1e-9 in "simulate recordings"
- Use "add noise" process from Hui-Ling (in Work/Dev/Divers)
- Use field process field "Group" to separate Input/Processing/Output options
- Use new Matlab functions: movmean, movsum, movmedian, movmax, movmin, movvar, movstd
- Process ft_prepare_heamodel: Add support from BEM surfaces from the Brainstorm database
Database
- Add buttons to sort files: by name, by comment, by date
- MEG protocols: More flexible organization of the database; sub-conditions to allow different runs X different conditions.
- Matrix files: Allow to be dependent from other files
- Add notes in the folders (text files, visible as nodes in the tree)
- Screen captures: save straight to the database
- Rename multiple files
- Default headmodel lost when reloaded: Keep selection on the hard drive (in brainstormstudy.mat)
- Auto-save:
protocol.mat can be too big: do not store the results links in it (and recreate when loading)- http://neuroimage.usc.edu/forums/t/abnormally-slow-behavior/2065/10
- Improve auto-save: add tracking file next to protocol.mat, do not save all the time, only when closing app, and reload protocol at stratup if tracking file is still there
Distributed computing
Options from FieldTrip:
Loose collection of computers: https://github.com/fieldtrip/fieldtrip/tree/master/peer
Alternative, with less limitations: http://research.cs.wisc.edu/htcondor/
Single multicore machine: https://github.com/fieldtrip/fieldtrip/tree/master/engine
Batch system: https://github.com/fieldtrip/fieldtrip/tree/master/qsub
Documentation: http://fieldtrip.fcdonders.nl/faq#distributed_computing_with_fieldtrip_and_matlab
Various initiatives: http://samirdas.github.io/Data_sharing.html#/
Source modeling
- Project sources: Very poor algorithm to project sub-cortical regions and cerebellum (algorithm to fit surfaces should be imrpoved)
Menu head model > Copy to other conditions/subjects (check if applicable first)
Menu Sources > Maximum value: Doesn't work with volume or mixed head models
Mixed head models:
- Set loose parameter from the interface
- Volume grid:
- Optimize: 3D display (better than 9x9 cubes)
- Optimize: vol_dilate (with 26 neighbors)
Menu Sources > Simulate recordings:
- Do not close the 3D figures after generating a new file
- Add a process equivalent to this menu
- Panel Get coordinates: Add button "find maximum"
- Dipoles:
- Project individual dipoles files on a template
- panel_dipoles: Doesn't work with multiple figures
- BEM single sphere: Get implementation from MNE
- Visualize Beamformer results:
- Read CTF SAM .svl
- Display as layers in the MRI viewer
- Unconstrained sources:
- Stat and connectivity: what to do? (re-send email John+Sylvain)
- Overlapping spheres: improve the estimation of the spheres for the frontal lobes
- Magnetic extrapolation: Do the same thing with EEG
- Noise covariance matrix:
- Display with figure_image()
- Storage of multiple noise covariance matrices (just like the head models)
- Always save as full, then at inversion time, we can decide between full, heteroskedastic (diagonal) or homoskedastic (i.i.d, scalar)
Problem of having inividual trials + averages in the condition => Display warning or not?
- Save nAvg in noisecov file, to make it easier to scale to other recordings
Sources on surface: Display peak regions over time (time = color) => A.Gramfort
Calculate ImagingKernel * Gain for a scout
- Time-frequency beamformers:
- Band-pass everything in different frequency bands + Source estimation + TF
- Ask data to Sarang where he sees effects that cannot be extracted with MN followed by TF
- Process "Extract scouts time series": Add PCA option (replace isnorm with choice PCA/Norm)
- BEM: Fix unstable results when one vertex is too close from the layers (5mm ?)
- Hui-Ling beamformers:
- More explanations about what is in NAI and Spatial filters
Explain that is this is better to study effects extended in time (Ntime > Nsensors)
- Group LCMV+MCB
- Condition LEFT median nerve: very bad results
- Keep options for inverse computation
- OpenMEEG: Post example datasets for the remaining issues:
- Example protocol ECOG: doesn't work
- Add eyes models to attract eye activity
Anatomy
BrainVISA: Add support for MarsAtlas
- Registration:
Getting electrode positions from 3D scanners: https://sccn.ucsd.edu/wiki/Get_chanlocs
Use the same registration for multiple recording sessions that have already re-registered previously (eg. with MaxFilter)
- When linking multiple EEG recordings including 3D positions, do the registration only once and copy it to all the runs
- Check templates: MNI transformation and volume atlases for ICBM152 vs Colin27 (loading the AAL atlas as surface or voume scouts do not align well on the ICBM152)
- Compute non-linear MNI registration instead of linear
- Select and remove bad digitized head points before automatic coregistration
Load the MNE -transf.fif: http://neuroimage.usc.edu/forums/showthread.php?2830
- MRI Viewer:
- Add display of "world coordinates" when "vox2ras" is available
- Pan in zoomed view (shift + click + move?)
- Zoom in/out with mouse (shift + scroll?)
- Ruler tool to measure distances
- Add keyboard shortcuts to scroll in the three orientations (same in MRI 3D)
- Display scouts as additional volumes
- Render surface envelope in the MRI as a thin line instead of the full interpolation matrix
- Edit fiducials: Replace 6 text boxes with 1 for easy copy-paste (see fiducials.m)
Optimize computation interpolation MRI-surface (tess_tri_interp) => spm_mesh_to_grid
BrainSuite:
Add new labels to all BrainSuite anatomy templates
Use BrainSuite inner skull for surface generation
- Use same colors for left and right for anatomical atlases
- Scouts:
- Display edges in the middle of the faces instead of the vertices
- Display scouts in a tree: hemisphere, region, subregion
- Sort scouts by region in process options
- Downsample to atlas: allow on timefreq/connect files
Project from one hemisphere to the other using registered spheres/squares (http://neuroimage.usc.edu/forums/t/how-to-create-mirror-roi-in-the-other-hemisphere/5910/8)
- Parcellating volume grids: scikit-learn.cluster.Ward
- Major bug when importing surfaces for an MRI that was re-oriented manually
- Smooth surface: Fix little spikes due to irregularities in the mesh
- Bug: Hide scouts in the preview of the grid for volume head models
ECOG/SEEG
- Electrode models: Better way for managing/updating/adding electrode models
Contact positions: Import / set / detect
- Add history: Save modifications and transformations applied to the channel files (Marcel)
- ECOG: How to handle cases where not all the grid contacts are in the channel file? (Marcel)
- Project contact positions across subjects or templates (Marcel)
- ECOG: Default names of contacts?
- Add menu to import implantation channel file in imported recordings
- Automatic segmentation of CT:
- ECOG: Project and display contacts on cortex surface should consider the rigidity of the grids: Contacts cannot rotate, and distance between contacts should remain constant across runs
ECOG: Method for contacts projection: https://pdfs.semanticscholar.org/f10d/6b899d851f3c4b115404298d7b997cf1d5ab.pdf
ECOG: Brain shift: When creating contact positions on a post-implantation image, the brain shift should be taken into account for creating images of the ECOG contacts on the pre-op brain => iELVis (http://ielvis.pbworks.com/w/page/116347253/FrontPage)
- Display:
- Bad channels: Contacts greyed out instead of ignored (Marcel)
- Display time in H:M:S
- Display curved SEEG electrodes
- Re-referencing:
- Create new average reference montages with a specific list of channels, with the possibility to edit the order of the channels (for Jeremy)
- Closest white reference (Arnulfo)
Detection CEEP stim artifacts: Use ImaGIN code ImaGIN_StimDetect
Alternatives to OpenMEEG: SimBio/FieldTrip? Matti Stenroos? NFT/NIST?
Statistics
- ANOVA:
- Use LENA functions(?)
- Output = 1 file per effect, all grouped in a node "ANOVA"
- Display several ANOVA maps (from several files) on one single figure, using a "graphic accumulator", towards which one can send any type of graphic object
- New process to test for Gaussianity using swtest
- Simulate recordings with specific properties, for stat validation
Quality control before statistics, on condition averages across subjects:
mean(baseline)/std(baseline): shows bad subject quickly.Use SurfStat: Impements interesting things, like an analytical cluster-based p-value correction (Random-field theory which is used in SPM) - Peter
Input / output
XDF import: Use the EEGLAB plugin, contact Martin Bleichner (Oldenburg)
- Output .nii have incorrect sform/qform when using the options to downsample the volume of cut the empty slices
- DICOM converter:
- Add dcm2nii (MRICron)
- Add MRIConvert
FieldTrip: Import/Export time-frequency:
- 4D file format:
- Use reader from MNE-Python: mne.io.read_raw_kit (doesn't require Yokogawa slow library)
- Reference gradiometers: Keep the orientation of the first or second coil?
- Reference gradiometers: Add the sensor definition from coil_def.dat
- Validate with phantom recordings that noise compensation is properly taken into account
- References at too far from the head sensors in Marseille 4D system
- The noise compensation is considered to be always applied on the recordings, not sure this assumption is always correct
- 4D phantom tutorial (JM Badier?)
- EEG File formats:
EEG CeeGraph
- EGI: Finish support for epoched files (formats 3,5,7)
Persyst .lay: https://github.com/ieeg-portal/Persyst-Reader
Nervus .eeg: https://github.com/ieeg-portal/Nervus-Reader
Biopac .acq: https://github.com/ieeg-portal/Biopac-Reader
- gTec EEG recordings: Read directly from the HDF5 files instead of the Matlab exports.
- BCI2000 Input (via EEGLAB plugin)
- EEGLAB import:
- Support for binary AND epoched files (now it's one or the other)
- Allow epoched files with recordings saved in external files
- BST-BIN: Add compressionto .bst
- Review raw on all the file formats (ASCII EEG and Cartool missing)
- SPM .mat/.dat: Fix the import of the EEG/SEEG coordinates
- Get acquisition date from files: Missing for 4D
Distribution & documentation
Compile with FieldTrip and SPM
- Add tags to the forum posts for easier listing by topic
- Tutorial OMEGA/BIDS:
- Add review of literature for the resting state MEG
- Download example datasets directly from the OMEGA repository
New tutorials:
Other public datasets: https://github.com/INCF/BIDS-examples/tree/bep008_meg/
- Rat PAC + high gamma (Soheila)
- EEG/research
FieldTrip ECOG tutorial: http://www.fieldtriptoolbox.org/tutorial/human_ecog
FieldTrip cortico-muscular coherence tutorial: http://www.fieldtriptoolbox.org/tutorial/coherence
Reproduce tutorials from MNE-Python: https://martinos.org/mne/stable/tutorials.html
Cam-CAN database: https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/<<BR>>(download new datasets, including maxfiltered files and manual fiducial placements)
- MEG steady-state / high-gamma visual / frequency tagging
- BIDS-EEG example datasets
- Stand-alone ICA tutorial
- Co-register MEG runs (Beth)
- Move all the files to download on the cloud for faster download everywhere in the world
- Provide secure way of sending password over HTTPS for:
- Account creation
- Forum exchanges
org.brainstorm.dialog.CloneControl
Workflows FieldTrip: http://www.fieldtriptoolbox.org/faq/what_types_of_datasets_and_their_respective_analyses_are_used_on_fieldtrip
Count GitHub clones in the the download stats
- Google Analytics: Create template and update the section of the Community page
- Missing in page "Cite Brainstorm": Add all the methods used in the software
- Deface the MRIs of all the tutorials
- Compiled R2016b: Color picker doesn't work (for changing surface color for instance)
Current bugs
- Screen capture:
- Bug on Win8/Win10: doesn't capture the correct part of the screen
- Window managers with fading effect: captures the top window
- Image viewer:
- Difficult to get to 100%
- Buggy on some systems
- 2DLayout:
- (TF) Units are weird with % values
- (TF) Difficult to navigate in frequencies: Scaling+changing frequency resets the scaling
- Progress bar:
- Doesn't close properly on some Linux systems
- Focus requests change workspace when processing constantly (Linux systems)
- MacOS bugs:
- Buttons {Yes,No,Cancel} listed backwards
- Record tab: Text of epoch number is too big
- Colormap menus: Do not work well on compiled MacOSX 10.9.5 and 10.10
- Matlab bugs:
- Interface looks small on screens with very high resolutions: Reduce the resolution
- Event markers are not visible anymore with the sequence: Open MEG, open EOG, close MEG
- in_bst_data_multi: If trials have different sizes, output is random (the one of the first file)
- Edit scout in MRI: small modifications cause huge increase of the scout size
- Canolty maps computation: Fix progress bar
Geeky programming details
- bst_bsxfun: After 2016b, we can use directly the scalar operators (./ .* ...) instead of bsxfun. Update bst_bsxfun to skip the use of bsxfun when possible.
Interface scaling: Rewrite class IconLoader to scale only once the icons at startup instead of at each request of an icon (might improve the speed of the rendering of the tree)
- Hide Java panels instead of deleting them
- Processes with "radio" and "radio_line" options: Replace with "radio_label" and "radio_linelabel"
- Interpolations: Use scatteredInterpolant, griddedInterpolant, triangulation.nearestNeighbor (2014b)
- bst_warp and channel_project: Use tess_parametrize_new instead of tess_parametrize
- Shared kernels: "get bad channels" operation in a different way (reading all the files is too slow)
- Optimize bst_get:
- Now study and subject have necessarily the same folder name
- Replace big switch with separate functions
- Progress bar:
- Add different levels (to handle sub-processes)
- Make work correctly with RAW on resting tutorial
- Uniformize calls in bst_process/Run
- Add a "Cancel" button
- Fix all the 'todo' blocks in the code
- Error message: Add a link to report directly the bug on the forum