20689
Comment:
|
22011
|
Deletions are marked like this. | Additions are marked like this. |
Line 10: | Line 10: |
* Default montages for EEG (sensor selection) | |
Line 13: | Line 12: |
* Mouse ruler: Measure duration and amplitude by dragging the mouse. | * Mouse ruler: Measure amplitude by dragging the mouse. |
Line 16: | Line 15: |
* RAW file viewer speed: * Downsample before filtering? (attention to the filter design) |
* RAW file viewer speed (Low priority) :<<BR>> * Consider to change to a format that is faster to read |
Line 19: | Line 19: |
* Pre-load next page of recordings * Keep the filter specifications in memory instead of recomputing for every page |
* Keep the filter specifications in memory instead of recomputing for every page<<BR>>(Nice to have) |
Line 22: | Line 22: |
* Simulations: https://github.com/lrkrol/SEREEGA | * Simulations: https://github.com/lrkrol/SEREEGA(Low priority) |
Line 25: | Line 26: |
* Display: * Group display: Overlay multiple channel files, coloring contacts by subject/ROI/Cluster * Bad channels: Contacts greyed out instead of ignored (Marcel) * Display time in H:M:S (useful for tutorial Epileptogenicity) * Display curved SEEG electrodes * Create clusters from anatomical labels: * Identify contacts in a given anatomical region (volume scout, surface mesh, or label in a volume atlas) / allow extracting the signals from all the contacts in an ROI * Group analysis: extract clusters across subjects, display or average signals (see MIA) * Spike detection: |
* https://www.sciencedirect.com/science/article/pii/S1053811922005559 * Display (high-priority)(Part SEEG grant): * Group display: Overlay multiple channel files in the same figure, coloring contacts by subject/ROI/Cluster/Electrode name * https://neuroimage.usc.edu/forums/t/37617 * iEEG tab must be read-only when multiple files (hide configuration controls) * Bad channels: Contacts greyed out instead of ignored (Marcel H, Germany)<<BR>>(To diff between band and not-recorded) > Rendering of SEEG electrodes: Full surface modelling with surface mesh (see Lead-DBS models + code that generates them?) * Display time in H:M:S instead of S > If there is t0 in H:M:S instead of S > As an option in Display configuration button>x-axis * view_leadfield_sensitivity: Add closing surfaces at cortex limits * Create clusters from anatomical labels (Anne So) : * Identify contacts in a given anatomical region (volume scout, surface mesh, or label in a volume atlas) / allow extracting the signals from all the contacts in an ROI> As a process to select recordings, then Scouts from Volumen Atlas, Create cluster in channel file, then Extract time series. * Group analysis: extract clusters across subjects, display or average signals (see MIA) (Anne So) * Spike detection (Need to check for current toolboxes from scratch)(contact Nicolas R)(Mosher J)(iEEG BIDS): |
Line 35: | Line 47: |
Line 37: | Line 50: |
Line 38: | Line 52: |
Line 41: | Line 56: |
Line 43: | Line 59: |
Line 44: | Line 61: |
Line 47: | Line 65: |
Line 48: | Line 67: |
* Display CT images: Better brightness/contrast adjustment: https://neuroimage.usc.edu/forums/t/automatic-localization-of-seeg-electrodes/36302/8 * Detection CEEP stim artifacts: Use ImaGIN code ImaGIN_StimDetect |
* Display CT images: Better brightness/contrast adjustment: https://neuroimage.usc.edu/forums/t/automatic-localization-of-seeg-electrodes/36302/8 Range of values is way diff than ones from MRI. Current color maps are not suitable for CT, need to be improved.Together with processing of CT to get electrode positions. * Detection CCEP stim artifacts: Use ImaGIN code ImaGIN_StimDetect https://f-tract.eu/software/imagin/ |
Line 57: | Line 78: |
Line 61: | Line 83: |
Line 67: | Line 90: |
* Add note when rejecting trials: https://neuroimage.usc.edu/forums/t/33686 | * Use it to guide ICA: http://www2.hu-berlin.de/eyetracking-eeg/ |
Line 71: | Line 94: |
Line 75: | Line 99: |
Line 76: | Line 101: |
* Use EYE-EEG: EEGLAB toolbox for eye-tracker guided ICA (Olaf Dimigen): http://www2.hu-berlin.de/eyetracking-eeg/ | * Spectral representation of ICs |
Line 79: | Line 105: |
* File format: * Add support to read GDF file format https://github.com/donnchadh/biosig/blob/master/biosig/t200_FileAccess/sload.m * <<BR>> * |
|
Line 83: | Line 117: |
* Import window: Add button to create the corresponding processing pipeline (to generate script or to edit additional options) * Adding the list of plugins to the reports (optionnal or foldable) |
* Import window: Add button to create the corresponding processing pipeline (to generate script or to edit additional options). * Adding the list of plugins to the reports |
Line 86: | Line 120: |
* Improving the pipeline editor to handle loops over data files or subjects | |
Line 90: | Line 123: |
Line 94: | Line 128: |
* Copy figures to clipboard (with the screencapture function) | |
Line 96: | Line 130: |
Line 103: | Line 138: |
* Thresholding and stat tests for connectivity matrices: * Panel Display: Show only the top N% measures * Misic: https://www.nature.com/articles/s41583-022-00601-9 |
* Define names and unit labels for each connectivity metric * Null models: (Bratislav M) https://www.nature.com/articles/s41583-022-00601-9 |
Line 107: | Line 142: |
Line 108: | Line 144: |
* Graph on sensors: does not place the sensors correctly in space | * Graph on sensors: Place M/EEG sensors by location, not by channel order |
Line 112: | Line 148: |
* Time-resolved correlation/coherence: Display as time bands | * Time-resolved correlation/coherence: Display as time bands (as done in wavelet, to have same time axis as data) |
Line 118: | Line 155: |
* ICA: https://neuroimage.usc.edu/forums/t/ica-on-very-long-eeg/23556/4 | |
Line 120: | Line 157: |
* Reproduce other tutorials / examples * Point-spread functions (PSFs) and cross-talk functions: https://mne.tools/stable/auto_examples/inverse/plot_psf_ctf_vertices.html#sphx-glr-auto-examples-inverse-plot-psf-ctf-vertices-py |
* Reproduce tutorials / examples from FieldTrip and MNE-Python: * FieldTrip ECOG tutorial: http://www.fieldtriptoolbox.org/tutorial/human_ecog * Reproduce tutorials from MNE-Python: https://martinos.org/mne/stable/tutorials.html |
Line 123: | Line 163: |
Line 124: | Line 165: |
Line 125: | Line 167: |
Line 131: | Line 174: |
Line 132: | Line 176: |
Line 133: | Line 178: |
Line 134: | Line 180: |
Line 135: | Line 182: |
Line 136: | Line 184: |
* Freqanalysis: ITC | |
Line 138: | Line 185: |
Line 140: | Line 188: |
Line 141: | Line 190: |
* Test speed for writing files: <<BR>>https://undocumentedmatlab.com/articles/improving-fwrite-performance | |
Line 144: | Line 192: |
Line 148: | Line 197: |
Line 149: | Line 199: |
Line 150: | Line 201: |
Line 151: | Line 203: |
* Optimization: bst_timefreq (around l.136), remove evoked in source space: Average should be computed in sensor space instead of source space (requested by Dimitrios) | * Optimization: bst_timefreq (around l.136), remove evoked in source space: Average should be computed in sensor space instead of source space (requested by Dimitrios) |
Line 153: | Line 205: |
Line 156: | Line 209: |
* Review continuous files in time-frequency space (for epilepsy) | |
Line 158: | Line 210: |
* requested feature from the forum: * * https://neuroimage.usc.edu/forums/t/event-export-and-process-find-maximum-value-amplitude/41911/2 * * https://neuroimage.usc.edu/forums/t/custom-process-that-involves-merging-of-channels/40638 * * https://neuroimage.usc.edu/forums/t/swloreta-for-source-localization/41882/4 |
|
Line 160: | Line 217: |
* Display parcellation values (matrices) in 3D and 2D. * https://github.com/dutchconnectomelab/Simple-Brain-Plot * Scouts |
|
Line 161: | Line 222: |
Line 166: | Line 228: |
Line 170: | Line 233: |
Line 175: | Line 239: |
Line 176: | Line 241: |
Line 178: | Line 244: |
* Removing MNI face mask using MNI coordinates * Atlas switch in 3D MRI figures |
* Removing MNI face mask using MNI coordinates (mask available ICMB152 2023b) |
Line 181: | Line 248: |
Line 186: | Line 254: |
Line 189: | Line 258: |
Line 192: | Line 262: |
Line 193: | Line 264: |
Line 194: | Line 266: |
Line 195: | Line 268: |
Line 196: | Line 270: |
Line 200: | Line 275: |
Line 202: | Line 278: |
Line 209: | Line 286: |
Line 210: | Line 288: |
Line 211: | Line 290: |
Line 212: | Line 292: |
Line 213: | Line 294: |
* BEM single sphere: Get implementation from MNE * Add eyes models to attract eye activity |
* BEM single sphere: Get implementation from MNE-Python (John Mosher) * Add eyes models to attract eye activity (Put a dipole in each eye) |
Line 218: | Line 299: |
Line 220: | Line 302: |
Line 221: | Line 304: |
Line 222: | Line 306: |
Line 223: | Line 308: |
* Point-spread and cross-talk functions (code in MNE-Python): * https://www.biorxiv.org/content/biorxiv/early/2019/06/18/672956.full.pdf |
* Point-spread functions (PSFs) and cross-talk functions: https://mne.tools/stable/auto_examples/inverse/plot_psf_ctf_vertices.html#sphx-glr-auto-examples-inverse-plot-psf-ctf-vertices-py https://www.biorxiv.org/content/biorxiv/early/2019/06/18/672956.full.pdf |
Line 226: | Line 312: |
Line 228: | Line 315: |
* panel_dipoles: Doesn't work with multiple figures | * panel_dipoles: Doesn't work with multiple figures (SOLVED?) |
Line 232: | Line 320: |
Line 234: | Line 323: |
Line 235: | Line 325: |
* Optimize: 3D display (better than 9x9 cubes) | * Optimize: 3D display (better than 3x3 cubes) |
Line 241: | Line 331: |
Line 246: | Line 337: |
Line 251: | Line 343: |
* Disable logging of sub-processes (reloading the previous report should only show process_import_bids) | |
Line 252: | Line 345: |
* Disable logging of sub-processes (reloading the previous report should only show process_import_bids) | |
Line 255: | Line 347: |
Line 256: | Line 349: |
Line 257: | Line 351: |
Line 258: | Line 353: |
* Test datasets: * See list of test datasets in process_import_bids.m * ds004085 / ds004473: Check response epoch + BUG with coordinate interpretation |
|
Line 262: | Line 362: |
Line 263: | Line 364: |
Line 264: | Line 366: |
Line 267: | Line 370: |
Line 270: | Line 374: |
Line 271: | Line 376: |
Line 272: | Line 378: |
Line 273: | Line 380: |
Line 274: | Line 382: |
Line 281: | Line 390: |
Line 287: | Line 397: |
Line 289: | Line 400: |
Line 292: | Line 404: |
Line 296: | Line 409: |
Line 297: | Line 411: |
Line 299: | Line 414: |
* Remove ICBM152 default anatomy from repo | |
Line 308: | Line 423: |
* easyh5 | |
Line 314: | Line 428: |
Line 318: | Line 433: |
Line 320: | Line 436: |
Line 321: | Line 438: |
* FieldTrip ECOG tutorial: http://www.fieldtriptoolbox.org/tutorial/human_ecog * Reproduce tutorials from MNE-Python: https://martinos.org/mne/stable/tutorials.html |
|
Line 324: | Line 440: |
Line 326: | Line 443: |
Line 332: | Line 450: |
Line 335: | Line 454: |
Line 336: | Line 456: |
* Doesn't close properly on some Linux systems * Focus requests change workspace when processing constantly (Linux systems) |
* Doesn't close properly on some Linux systems (SOLVED?) * Focus requests change workspace when processing constantly (Linux systems) (SOLVED?) |
Line 342: | Line 462: |
Line 343: | Line 464: |
Line 344: | Line 466: |
Line 345: | Line 468: |
Line 346: | Line 470: |
Line 352: | Line 477: |
Line 353: | Line 479: |
* Interpolations: Use scatteredInterpolant, griddedInterpolant, triangulation.nearestNeighbor (2014b) |
What's next
A roadmap to the future developments of Brainstorm.
Contents
Recordings
- Review signals in time-frequency space
- Events processes: Select events names from a list instead of having to type them
- Display CTF coils: Show discs instead of squares
- Sleep scoring wish list (Emily C):
- Configurable horizontal lines (for helping detecting visually some thresholds)
- Mouse ruler: Measure amplitude by dragging the mouse.
- Automatic spindle detector
https://neuroimage.usc.edu/forums/t/page-overlap-while-reviewing-raw-file-a-way-to-set-to-0/11229/13
RAW file viewer speed (Low priority) :
- Consider to change to a format that is faster to read
- Add parameter to make the visual downsampling more or less aggressive
Keep the filter specifications in memory instead of recomputing for every page
(Nice to have)
BioSemi: Add menu "Convert naming system" to rename channels into 10-10 (A1=>FPz)
Simulations: https://github.com/lrkrol/SEREEGA(Low priority)
ECOG/SEEG
https://www.sciencedirect.com/science/article/pii/S1053811922005559
- Display (high-priority)(Part SEEG grant):
- Group display: Overlay multiple channel files in the same figure, coloring contacts by subject/ROI/Cluster/Electrode name
- iEEG tab must be read-only when multiple files (hide configuration controls)
Bad channels: Contacts greyed out instead of ignored (Marcel H, Germany)
(To diff between band and not-recorded) > Rendering of SEEG electrodes: Full surface modelling with surface mesh (see Lead-DBS models + code that generates them?)Display time in H:M:S instead of S > If there is t0 in H:M:S instead of S > As an option in Display configuration button>x-axis
- view_leadfield_sensitivity: Add closing surfaces at cortex limits
- Group display: Overlay multiple channel files in the same figure, coloring contacts by subject/ROI/Cluster/Electrode name
- Create clusters from anatomical labels (Anne So) :
Identify contacts in a given anatomical region (volume scout, surface mesh, or label in a volume atlas) / allow extracting the signals from all the contacts in an ROI> As a process to select recordings, then Scouts from Volumen Atlas, Create cluster in channel file, then Extract time series.
- Group analysis: extract clusters across subjects, display or average signals (see MIA) (Anne So)
- Spike detection (Need to check for current toolboxes from scratch)(contact Nicolas R)(Mosher J)(iEEG BIDS):
- Automatic segmentation of CT:
SEEG DEETO Arnulfo 2015: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0511-6
- Used routinely at Niguarda Hospital + other hospitals worldwide, reliable tool.
To be used with SEEG-assistant/3DSlicer: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1545-8
ECOG Centracchio 2021: https://link.springer.com/content/pdf/10.1007/s11548-021-02325-0.pdf
Classifier on thresholded CT: https://github.com/Jcentracchio/Automated-localization-of-ECoG-electrodes-in-CT-volumes
SEEG Granados 2018 (no code shared): https://link.springer.com/content/pdf/10.1007/s11548-018-1740-8.pdf
- ECOG:
- Project and display contacts on cortex surface should consider the rigidity of the grids: Contacts cannot rotate, and distance between contacts should remain constant across runs
Method for contacts projection: https://pdfs.semanticscholar.org/f10d/6b899d851f3c4b115404298d7b997cf1d5ab.pdf
ECOG: Brain shift: When creating contact positions on a post-implantation image, the brain shift should be taken into account for creating images of the ECOG contacts on the pre-op brain => iELVis (http://ielvis.pbworks.com/w/page/116347253/FrontPage)
Normalization MNI? solutions with FieldTrip?
Display CT images: Better brightness/contrast adjustment: https://neuroimage.usc.edu/forums/t/automatic-localization-of-seeg-electrodes/36302/8 Range of values is way diff than ones from MRI. Current color maps are not suitable for CT, need to be improved.Together with processing of CT to get electrode positions.
Detection CCEP stim artifacts: Use ImaGIN code ImaGIN_StimDetect https://f-tract.eu/software/imagin/
Pre-processing
- process_detectbad:
- Allow on raw files (for bad channels only)
- Add detection on derivative of the signal (see EEGLAB)
- Document in tutorial Bad channels
- PREP pipeline / EEGLAB (Bigdely-Shamlo 2015)
- Improve bad channel/trial detection:
- ft_artifact_threshold and ft_rejectartifact
- MNE-Python
- EEGLAB
- Integrate with EYE-EEG (Olaf Dimigen)
Reproduce tutorial: https://www.eyetracking-eeg.org/tutorial.html
- Create EYE-EEG plugin + processes (Raphael Lambert)
- Process: Detect sacades (extended events) + fixations
- Improved ICA
- Eye-movement related potentials
Use it to guide ICA: http://www2.hu-berlin.de/eyetracking-eeg/
ICA:
Automatic classification: ICLabel: https://neuroimage.usc.edu/forums/t/automatic-eeg-ic-ica-classification-for-brainstorm/33785
- Exploration: Add window with spectral decomposition (useful for muscle artifacts)
- Export IC time series (and then compute their spectrum): solves the problem above
- Import ICA matrices available in EEGLAB .set files
ICA+machine learning: https://www.ncbi.nlm.nih.gov/pubmed/28497769
Automated artifact rejection: https://arxiv.org/abs/1612.08194
- Spectral representation of ICs
- SSP:
Display warning if changing the ChannelFlag while there is a Projector applied
- File format:
- Add support to read GDF file format
https://github.com/donnchadh/biosig/blob/master/biosig/t200_FileAccess/sload.m
Reproducibility toolbox
- Generate fully reproducible scripts, including all the interactive/graphical parts
- Record all GUI actions as script calls
- Import window: Add button to create the corresponding processing pipeline (to generate script or to edit additional options).
- Adding the list of plugins to the reports
- Better provenance: History fields, uniform file names...
Interface
Add a warning when computing a forward model with > 100000 sources (check selection)
- Colormaps: Global colormap max: Should get the maximum across all the open files
- Snapshot:
- Save as image / all figures (similar to Movie/all figure)
Contact sheets & movies: use average of time windows instead of single instants, for each picture.
- Contact sheets: Allow explicit list of times in input (+ display as in MNE-Python with TS)
Database
- Save iHeadModel somewhere in the datbase structure
Generalize the use of the units (field .DisplayUnits): Save in source files
Connectivity
- Define names and unit labels for each connectivity metric
Null models: (Bratislav M) https://www.nature.com/articles/s41583-022-00601-9
- Connect NxN display:
- Graph on sensors: Place M/EEG sensors by location, not by channel order
- Display as image: Add legend of the elements along X and Y axis
- Display as time series: Display warning before trying to open too many signals
- Optimize display: use surface() instead of line() for links? (as in figure_3d/PlotFibers)
- Time-resolved correlation/coherence: Display as time bands (as done in wavelet, to have same time axis as data)
Processes
- Add MNE-Python functions:
- scikit-learn classifiers
- BEM single layer (John wants to test it)
https://neuroimage.usc.edu/forums/t/best-way-to-export-to-mne-python/12704/3
Reproduce tutorials / examples from FieldTrip and MNE-Python:
FieldTrip ECOG tutorial: http://www.fieldtriptoolbox.org/tutorial/human_ecog
Reproduce tutorials from MNE-Python: https://martinos.org/mne/stable/tutorials.html
Spatial resolution metrics in source space:
https://mne.tools/stable/auto_examples/inverse/plot_resolution_metrics.html#sphx-glr-auto-examples-inverse-plot-resolution-metrics-py- Change the graphic renderer from Matlab
Chronux toolbox : http://chronux.org/
Add FieldTrip functions:
- ft_sourceanalysis:
- Check noise covariance
- Check all the options of all the methods
- Single trial reconstructions + noise covariance?
Filters?? http://www.fieldtriptoolbox.org/example/common_filters_in_beamforming
Beamformers: Save ftSource.avg.mom
http://www.fieldtriptoolbox.org/workshop/meg-uk-2015/fieldtrip-beamformer-demohttp://www.fieldtriptoolbox.org/tutorial/beamformingextended
- Baseline? Two inputs?
- ft_prepare_heamodel: Add support from BEM surfaces from the Brainstorm database
ft_volumereslice: http://www.fieldtriptoolbox.org/faq/how_change_mri_orientation_size_fov
- ft_freqanalysis
- ft_combineplanar
- ft_sourceanalysis:
- Optimization:
- Use CUDA for speeding up some operations (filtering, wavelets, etc)
- Use Matlab Coder to optimize: Wavelets, bandpass filter, sinusoid removal
- Pipeline editor:
- Bug: After "convert to continuous", the time of the following processes should change
- Add loops over subjects/conditions/trial groups
- Events: Allow selection from a drop-down list (similar to option "channelname" in panel_process_selection)
ITC: Inter-trial coherence (see MNE reports for group tutorial)
http://www.sciencedirect.com/science/article/pii/S1053811916304232Remove line noise: http://www.nitrc.org/projects/cleanline
- Time-frequency:
- Optimization: bst_timefreq (around l.136), remove evoked in source space: Average should be computed in sensor space instead of source space (requested by Dimitrios)
Short-time Fourier transform: http://www.mikexcohen.com/lectures.html
- Hilbert with time bands very slow on very long files (eg. 3600s at 1000Hz) because the time vector is still full (10^7 values): save compressed time vector instead.
- When normalizing with baseline: Propagate with the edge effects marked in TFmask
- Allow running TF on montages
- Bug when computing TF on constrained and unconstrained scouts at the same time (in mixed head models for instance): uses only the constrained information and doesn't sum the 3 orientations for the unconstrained regions.
- requested feature from the forum:
* https://neuroimage.usc.edu/forums/t/event-export-and-process-find-maximum-value-amplitude/41911/2
* https://neuroimage.usc.edu/forums/t/custom-process-that-involves-merging-of-channels/40638
* https://neuroimage.usc.edu/forums/t/swloreta-for-source-localization/41882/4
Anatomy
- Display parcellation values (matrices) in 3D and 2D.
Import SimNIBS4: Use final_tissues_LUT.txt instead of fixed list of tissues: https://neuroimage.usc.edu/forums/t/removing-a-lesioned-area/38414/20
Simple-brain-plot: https://github.com/dutchconnectomelab/Simple-Brain-Plot
- MNI normalization: More options:
- DARTEL / SHOOT
BrainSuite (wait for Anand)
- Import from SimNIBS (Conform2MNI_nonl.nii.gz, MNI2Conform_nonl.nii.gz)
- MRI Viewer:
Adjust CT contrast better: https://neuroimage.usc.edu/forums/t/automatic-localization-of-seeg-electrodes/36302/10
- Pan in zoomed view (shift + click + move?)
- Zoom in/out with mouse (shift + scroll?)
- Ruler tool to measure distances
- Display scouts as additional volumes
Render surface envelope in the MRI as a thin line instead of the full interpolation matrix
Or use inpolyhedron to get a surface mask and then erode it to get the volume envelopeSurface>Volume interpolation: Use spm_mesh_to_grid instead of tess_tri_interp
- Defacing:
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/tutorials/refacer/refacer_run.html
- Removing MNI face mask using MNI coordinates (mask available ICMB152 2023b)
Bug import anatomy: Requested nVert > high-resolution cortex surface: Creates an empty cortex_0V
BrainSuite:
- Use same colors for left and right for anatomical atlases
- Use for volume coregistration (rigid / non-rigid)
- USCBrain: Add default electrodes positions
Remove BrainSuite1 when not needed anymore
- Brain2mesh: Add import of 10-10 positions
- Templates for different ages:
MNI: https://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj1
Pediatric head atlases: https://www.pedeheadmod.net/pediatric-head-atlases-v1-2/
https://www.biorxiv.org/content/biorxiv/early/2020/02/09/2020.02.07.939447.full.pdf
John Richards: https://www.nitrc.org/frs/?group_id=1361
Neurodev database: https://jerlab.sc.edu/projects/neurodevelopmental-mri-database/
- Scouts:
- Display edges in the middle of the faces instead of the vertices
- Parcellating volume grids: scikit-learn.cluster.Ward
Geodesic distance calculations:
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching- Improving the registration between EEG and anatomy templates:
- Warping: Improve the basic alignment of the digitized electrodes on the templat, possibly with Cz and other anatomical landmarks
- EEG template positions: rework using a standardized Cz position (+ other landmarks)
Forward modeling
- DUNEuro/FEM:
Add lesion mask to SimNIBS: https://simnibs.github.io/simnibs/build/html/documentation/command_line/add_tissues_to_upsampled.html#add-tissues-to-upsampled-doc
GeomtryAdapted: Buggy?
Display differences between leadfields: amplitude of difference (right-click > Compare)
- Display sensitivity on FEM surface
- OpenMEEG: Detect bad results + exclude from leadfield
- BEM single sphere: Get implementation from MNE-Python (John Mosher)
- Add eyes models to attract eye activity (Put a dipole in each eye)
Source modeling
Reproduce results in "Simultaneous human intracerebral stimulation and HD-EEG, ground-truth for source localization methods": https://www.nature.com/articles/s41597-020-0467-x
- eLORETA instead of sLORETA?
https://neuroimage.usc.edu/forums/t/compute-eeg-sources-with-sloreta/13425/6
https://neuroimage.usc.edu/forums/t/loreta-and-source-localization/30525
"eLORETA algorithm is available in the MEG/EEG Toolbox of Hamburg (METH)": https://www.biorxiv.org/content/biorxiv/early/2019/10/17/809285.full.pdf
Point-spread functions (PSFs) and cross-talk functions: https://mne.tools/stable/auto_examples/inverse/plot_psf_ctf_vertices.html#sphx-glr-auto-examples-inverse-plot-psf-ctf-vertices-py https://www.biorxiv.org/content/biorxiv/early/2019/06/18/672956.full.pdf
- Dipoles:
- Display dipoles in MRI viewer
- panel_dipoles: Doesn't work with multiple figures (SOLVED?)
- Project sources: Very poor algorithm to project sub-cortical regions and cerebellum
- Maximum:
Menu Sources > Maximum value: Doesn't work with volume or mixed head models
- Panel Get coordinates: Add button "find maximum"
Sources on surface: Display peak regions over time (time = color) => A.Gramfort
- Volume grid:
- Optimize: 3D display (better than 3x3 cubes)
- Optimize: vol_dilate (with 26 neighbors)
Statistics
- Stat on unconstrained sources?
Stat/time series: Hide lines going down to zero (Dimitrios: https://neuroimage.usc.edu/forums/t/common-source-activation-across-subjects-and-conditions/1152/21)
- Cluster stat: Add frequency selection option
- ANOVA:
- Write panel similar to Process1 and Process2
- Output = 1 file per effect, all grouped in a node "ANOVA"
- Display several ANOVA maps (from several files) on one single figure, using a "graphic accumulator", towards which one can send any type of graphic object
Multivariate stim-response analysis: https://github.com/mickcrosse/mTRF-Toolbox
Input / output
- BIDS import:
- Add option to process to specify the protocol name
- Disable logging of sub-processes (reloading the previous report should only show process_import_bids)
- Full support for iEEG and EEG
- Read real fiducials (OMEGA) / transformation matrices:
- Use BIDS-Matlab?
- Test datasets:
- See list of test datasets in process_import_bids.m
- ds004085 / ds004473: Check response epoch + BUG with coordinate interpretation
- BIDS export:
- EEG, iEEG: Add events.tsv, channel.tsv, electrodes.tsv
- Anatomy: Add t1w.json (including fiducials)
- Use BIDS-Matlab?
- EDF+ reader: Add resampling of channels with different sampling rates
Support for OpenJData / JNIfTI: https://github.com/brainstorm-tools/brainstorm3/issues/284
- DICOM converter:
- Add dcm2nii (MRICron)
- Add MRIConvert
- SPM .mat/.dat: Fix the import of the EEG/SEEG coordinates
EEG File formats:
Persyst .lay: https://github.com/ieeg-portal/Persyst-Reader
Nervus .eeg: https://github.com/ieeg-portal/Nervus-Reader
Biopac .acq: https://github.com/ieeg-portal/Biopac-Reader
- BCI2000 Input (via EEGLAB plugin)
- 4D file format:
- Use reader from MNE-Python: mne.io.read_raw_kit (skip Yokogawa slow library)
- Reference gradiometers: Keep the orientation of the first or second coil?
- Reference gradiometers: Add the sensor definition from coil_def.dat
- Validate with phantom recordings that noise compensation is properly taken into account
- The noise compensation is considered to be always applied on the recordings, not sure this assumption is always correct
- 4D phantom tutorial (JM Badier?)
- BST-BIN: Add compression to .bst
- MINC MRI: Add support for "voxel to world" transformation (vox2ras) similarly to .nii
Distribution
- Java-free Matlab: All references of functions below must be removed
JavaFrame: screencapture.m (used for screen captures of videos)
Actxcontrol: Used for video-EEG
uihtml + JavaScript callbacks?
- ActiveX in .NET app?
- Pure Java framce + VLC java plugin?
- Other video player?
Javacomponent:
- mri_editMask
- figure_mri
- process_bandpass
List .jar files used from Matlab distribution (e.g. dom) => Check all the import calls
Cleanup GitHub repository:
- Move external I/O libraries as plugins:
- mne-matlab
- CEDS64ML
- edfimport
- eeprobe
- son
- ricoh
- yokogawa
Documentation
- All tutorial datasets in BIDS (including introduction tutorials)
- Deface the MRIs of all the tutorials
Count GitHub clones in the the download stats
- MNE-Python 1.0: Test and update install documentation
- Tutorial OMEGA/BIDS:
- Update the organization of derivatives folder (full FS folders)
- Download example datasets directly from the OMEGA repository
New tutorials:
Other public datasets: https://github.com/INCF/BIDS-examples/tree/bep008_meg/
- EEG/research
Cam-CAN database: https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/<<BR>>(download new datasets, including maxfiltered files and manual fiducial placements)
- MEG steady-state / high-gamma visual / frequency tagging
Reproduce results from "Simultaneous human intracerebral stimulation and HD-EEG, ground-truth for source localization methods": https://www.nature.com/articles/s41597-020-0467-x
- Stand-alone ICA tutorial
Current bugs
- Image viewer:
- Difficult to get to 100%
- Buggy on some systems
- 2DLayout:
- (TF) Units are weird with % values
- (TF) Difficult to navigate in frequencies: Scaling+changing frequency resets the scaling
- Progress bar:
- Doesn't close properly on some Linux systems (SOLVED?)
- Focus requests change workspace when processing constantly (Linux systems) (SOLVED?)
Distributed computing
Options from FieldTrip:
Loose collection of computers: https://github.com/fieldtrip/fieldtrip/tree/master/peer
Single multicore machine: https://github.com/fieldtrip/fieldtrip/tree/master/engine
Batch system: https://github.com/fieldtrip/fieldtrip/tree/master/qsub
Documentation: https://www.fieldtriptoolbox.org/faq/what_are_the_different_approaches_i_can_take_for_distributed_computing/
Geeky programming details
- Replace all calls to inpolyhd.m with inpolyhedron.m (10x faster)
Interface scaling: Rewrite class IconLoader to scale only once the icons at startup instead of at each request of an icon (might improve the speed of the rendering of the tree)
- Processes with "radio" and "radio_line" options: Replace with "radio_label" and "radio_linelabel"