10658
Comment:
|
25368
|
Deletions are marked like this. | Additions are marked like this. |
Line 2: | Line 2: |
A roadmap for the future developments of Brainstorm. == Next six months == ==== Pre-processing ==== * Extend processing of continuous CTF files to all file formats * Continuous viewer: Many small improvements to the usability of its interface * Improve detection and correction of artifacts with SSP * Co-registration of several MEG runs on one single head position * Make all the main operations available in the pipeline editor ==== File formats ==== * MRI: MINC * EEG: Stellate * EEG: Brain Products / BrainAmp * Read and display NIRS recordings * CTF SAM Beamformer results ==== Functionnal connectivity ==== * Implementation of methods developed at USC <<BR>><<BR>> == Details of those features == |
A roadmap to the future developments of Brainstorm. <<TableOfContents(2,2)>> == Recordings == * Sleep scoring wish list (Emily C): * Configurable horizontal lines (for helping detecting visually some thresholds) * Mouse ruler: Measure duration and amplitude by dragging the mouse. * Automatic spindle detector * https://neuroimage.usc.edu/forums/t/page-overlap-while-reviewing-raw-file-a-way-to-set-to-0/11229/13 * RAW file viewer: * Downsample before filtering? (attention to the filter design) * Add parameter to make the visual downsampling more or less aggressive * Pre-load next page of recordings * Keep the filter specifications in memory instead of recomputing for every page * Bad trials: When changing the status of bad to good: remove the bad segments as well, otherwise it is not processed by processes like the PSD. * Review clinical recordings: Reduce the dimensionality of the data with a simple inverse problem, similar to what we do for the magnetic extrapolation ("Regional sources" in BESA, cf S Rampp) * MEG/EEG registration: Apply the same transformation to multiple runs * Create heat maps: Maybe with matlab function heatmap? == Interface == * Add a warning when computing a forward model with > 100000 sources (check selection) * Snapshot: Save as image / all figures (similar to Movie/all figure) * Generalize the use of the units (field .DisplayUnits): Rewrite processes to save the units correctly * Colormaps: * Allow brightness/contrast manipulations on the custom colormaps * Global colormap max: Should get the maximum across all the open files * Copy figures to clipboard (with the screencapture function) * Smooth display from figure_image (ERPimage, raster plot...) * Contact sheets & movies: use average of time windows instead of single instants, for each picture. * Contact sheets: Allow explicit list of times in input (+ display as in MNE-Python with TS) * Display CTF coils: Show discs instead of squares * Use boundary() instead of conhull() in all the display functions (ie. 2DDisc) * Progress bar: Add a "Cancel" button * Error message: Add a link to report directly the bug on the forum * Reorganize menus (Dannie's suggestion): {{attachment:dannie_menus.png||height="237",width="382"}} == Connectivity == * Thresholding and stat tests the connectivity matrices * Connectivity on unconstrained sources: "Default signal extraction for volume grids should be the time series of the first principal component of the triplet signals after each has been zero-meaned" (SB) * Display of connectivity graphs: * Display as straight lines * Recode 2D graphs * 3D display with anatomical constrains * Display using real position of EEG electrodes * Use new band-pass filters in bst_connectivity ('bst-hfilter' instead of 'bst-fft-fir') * Matrix view of NxN graphs: Add legend of the elements along X and Y axis * Graph view: * Does not display negative values correctly (correlation or difference of coherence) * Re-write using pure Matlab code and smoothed graphics * Fixed scales for intensity sliders * Text bigger * Too much data in appdata * Fixed scales for intensity sliders * Add "=" shortcut for having graphs with similar configurations * Disable zoom in one region (serious bugs) * NxN on sensors: does not place the sensors correctly in space * Coherence: * Average cross-spectra instead of concatenating epochs (to avoid discontinuities)<<BR>>Explore inter-trial approaches (Esther refers to chronux toolbox) * Granger: Check for minimum time window (Esther: min around 500-1000 data points) * PLV: * Add p-values * Remove evoked * Optimize code * Add time integration * Unconstrained sources * Add warning when running of short windows (because of filters) * Time-resolved correlation/coherence: Display as time bands * Tutorial coherence [1xN] : Reproduce FieldTrip results? * Connect NxN: Display as time series > Display warning before trying to open too many signals == Processes == * Decoding/Classifiers: Implement Dimitrios and scikit-learn algorithms * Allow processes in Python and Java * Add MNE-Python functions: * scikit-learn classifiers * Implement data exchange with MNE-Python: write FIF files from Brainstorm and/or pass python objects in memory instead of FIF files * https://neuroimage.usc.edu/forums/t/best-way-to-export-to-mne-python/12704/3 * SSS/tSSS cleaning * Reproduce other tutorials / examples * Change the graphic renderer from Matlab * Add FieldTrip functions: * ft_sourceanalysis: * Check noise covariance * Check all the options of all the methods * Single trial reconstructions + noise covariance? * Filters?? http://www.fieldtriptoolbox.org/example/common_filters_in_beamforming * Beamformers: Save ftSource.avg.mom <<BR>>http://www.fieldtriptoolbox.org/workshop/meg-uk-2015/fieldtrip-beamformer-demo * http://www.natmeg.se/ft_beamformer/beamformer.html * http://www.fieldtriptoolbox.org/tutorial/beamformingextended * Baseline? Two inputs? * ft_prepare_sourcemodel: Compute MNI transformation (linear and non-linear) => Peter * ft_prepare_heamodel: Add support from BEM surfaces from the Brainstorm database * Freqanalysis: ITC * ft_read_atlas('TTatlas+tlrc.BRICK'); * ft_volumereslice: http://www.fieldtriptoolbox.org/faq/how_change_mri_orientation_size_fov * ft_freqanalysis * ft_combineplanar * Optimization: * Use CUDA for speeding up some operations (filtering, wavelets, etc) * Use Matlab Coder to optimize: Wavelets, bandpass filter, sinusoid removal * Pipeline editor: * Bug: After "convert to continuous", the time of the following processes should change * Add loops over subjects/conditions/trial groups * Events: Allow selection from a drop-down list (similar to option "channelname" in panel_process_selection) * When computing sources from the pipeline editor: doesn't reselect the options if you click twice on "edit" (works for minnorm, but not for lcmv) * ITC: Inter-trial coherence (see MNE reports for group tutorial)<<BR>>http://www.sciencedirect.com/science/article/pii/S1053811916304232 * ICA: * Why doesn't the ICA process converge when using 25 components in the EEG tutorial? * Add an option to resample the signals before computing the ICA decomposition * Exploration: Add window with spectral decomposition (useful for muscle artifacts) * Export IC time series (and then compute their spectrum): solves the problem above * Comparison JADE/Infomax: <<BR>> http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030135 * Use faster methods (MNE-Python?) * Add methods: SOBI, Fastica, AMICA/CUDICA (recommended by S Makeig) * Dimension reduction with PCA adds artifacts: Not done by default in EEGLAB<<BR>>Contact: Stephen Shall Jones ( shall-jones@infoscience.otago.ac.nz )<<BR>>Student Carl Leichter detailed this in his thesis * S Makeig: Use ICA to select the IC of interest instead of only removing artifacts * Display of spectrum for components (PSD/FFT) * Import ICA matrices available in EEGLAB .set files * EEGLAB recommends ICA + trial rejection + ICA again: Impossible right now with Brainstorm<<BR>>(http://sccn.ucsd.edu/wiki/Chapter_09:_Decomposing_Data_Using_ICA) * ICA+machine learning: https://www.ncbi.nlm.nih.gov/pubmed/28497769 * Automated artifact rejection: https://arxiv.org/abs/1612.08194 * Use EYE-EEG: EEGLAB toolbox for eye-tracker guided ICA (Olaf Dimigen): http://www2.hu-berlin.de/eyetracking-eeg/ * Other EEGLAB functions: * Step function detection: https://github.com/lucklab/erplab/wiki/Artifact-Detection:-Tutorial |
Line 26: | Line 130: |
* Make SSP projections dynamic, and keep the full list instead of always them combining them * Take the bad channels in account in the application of the SSP * Refresh display after changing the list of bad channels (imported files + raw) so the SSP are applied correctly * When processing multiple files: waitbar is all messed up * Tune parameters for the automatic detection of heartbeats and eye blinks * Write documentation * RAW file viewer: * Buttons for changing scales (time + amplitude) * Add tooltips to all the buttons / shortcuts * Adding events using configurable shortcuts (CTRL+number) * If "Use SSP " option is selected, automatically select "Remove baseline" and "CTF compensations" * Documentation: Add definition of bad segments * RAW processing: * Process correctly CTF files saved without the 3rd order grad correction (apply correction before) * Allow to overwrite RAW files (but with a HUGE warning) * Update file definition + events if time changes (ex: resample) * Make it work for the file formats * Homogenize a selection of several subjects/conditions * Popup menu when more than one study selected * Creation of a common channel file (match channels by names, not by order) * Register MEG runs (recompute fields for a different set of sensors, MEGCoregister from old brainstorm) * Complete processing pipeline: * Import + pre-process * Sources / head model / noise covariance * Project sources * Do not generate errors, stay silent and generate a report log that is shown at the end * bst_selections: * Add user defined combinations of sensors (eg. "double banana" for EEG) * Use this to produce "inversed polarity" displayes too (useful in EEG) * Standard setups for al the EEG caps == Other == * Stat on scouts / clusters / "matrix" * Averager: remember how many trials were used per channel * Command-line Brainstorm: for working on clusters (make sure that there are no interface interruptions) |
* Display warning if changing the ChannelFlag while there is a Projector applied * Spectral flattening (John): * ARIMA(5,0,1): Apply on the signal before any frequency/connectivity/PAC analysis * PSD: * Rewrite to have the same input as coherence (frequency resolution instead of window length) * Allow display of Avg+StdErr * Remove line noise: http://www.nitrc.org/projects/cleanline * Time-frequency: * Optimization: bst_timefreq (around l.136), remove evoked in source space: Average should be computed in sensor space instead of source space (requested by Dimitrios) * Short-time Fourier transform: http://www.mikexcohen.com/lectures.html * Matching pursuit: http://m.jneurosci.org/content/36/12/3399.abstract?etoc * Bug: Display logs as negative * Bug: 3D figures: Colormaps with "log" option doesn't work * Bug: Difference of power displayed in log: problems (Soheila) * 2D Layout in spectrum * Make much faster and more memory efficient (C functions coded by Matti ?) * TF scouts: should display average of TF maps * Impossible to keep complex values for unconstrained sources * Pad short epochs with zero values for getting lower frequencies * Hilbert with time bands very slow on very long files (eg. 3600s at 1000Hz) because the time vector is still full (10^7 values): save compressed time vector instead. * Extend clusters tab to display of TF to overlay TF signals (Svet) * When normalizing with baseline: Propagate with the edge effects marked in TFmask * Allow baseline normalization of files computed with time bands * Allow running TF on montages * Review continuous files in time-frequency space (for epilepsy) * Bug when computing TF on constrained and unconstrained scouts at the same time (in mixed head models for instance): uses only the constrained information and doesn't sum the 3 orientations for the unconstrained regions. * Artifact detection: * Artifact rejection like SPM: if bad in 20%, bad everywhere * Test difference between adjacent samples * Events detection: Add option "std" vs "amplitude" * Simulation: * EEGSourceSim: https://www.sciencedirect.com/science/article/pii/S0165027019302341 * Fix units in simulation processes => no *1e-9 in "simulate recordings" * Use "add noise" process from Hui-Ling (in Work/Dev/Divers) * Use field process field "Group" to separate Input/Processing/Output options * Use new Matlab functions: movmean, movsum, movmedian, movmax, movmin, movvar, movstd == Database == |
Line 63: | Line 171: |
* Matrix files: Allow to be dependent from other files * Rename multiple files * Default headmodel lost when reloaded: Keep selection on the hard drive (in brainstormstudy.mat) * Auto-save: * protocol.mat can be too big: do not store the results links in it (and recreate when loading)- http://neuroimage.usc.edu/forums/t/abnormally-slow-behavior/2065/10 * Improve auto-save: add tracking file next to protocol.mat, do not save all the time, only when closing app, and reload protocol at stratup if tracking file is still there == Distributed computing == * Options from FieldTrip: * Loose collection of computers: https://github.com/fieldtrip/fieldtrip/tree/master/peer * Alternative, with less limitations: http://research.cs.wisc.edu/htcondor/ * Single multicore machine: https://github.com/fieldtrip/fieldtrip/tree/master/engine * Batch system: https://github.com/fieldtrip/fieldtrip/tree/master/qsub * Documentation: http://fieldtrip.fcdonders.nl/faq#distributed_computing_with_fieldtrip_and_matlab * PSOM: http://psom.simexp-lab.org/ * Various initiatives: http://samirdas.github.io/Data_sharing.html#/ == Source modeling == * Sensitivity maps: https://mne.tools/stable/auto_examples/forward/plot_forward_sensitivity_maps.html * Use eLORETA instead of sLORETA? <<BR>>https://neuroimage.usc.edu/forums/t/compute-eeg-sources-with-sloreta/13425/6 * "eLORETA algorithm is available in the MEG/EEG Toolbox of Hamburg (METH)": https://www.biorxiv.org/content/biorxiv/early/2019/10/17/809285.full.pdf * Point-spread and cross-talk functions (code in MNE-Python): * https://www.biorxiv.org/content/biorxiv/early/2019/06/18/672956.full.pdf * https://github.com/olafhauk/EEGMEGResolutionAtlas * Dipoles: * Project individual dipoles files on a template * panel_dipoles: Doesn't work with multiple figures * Project sources: Very poor algorithm to project sub-cortical regions and cerebellum (algorithm to fit surfaces should be imrpoved) * Menu head model > Copy to other conditions/subjects (check if applicable first) * Menu Sources > Maximum value: Doesn't work with volume or mixed head models * Mixed head models: * Set loose parameter from the interface * Bug when displaying interpolated in MRI viewer * Volume grid: * Optimize: 3D display (better than 9x9 cubes) * Optimize: vol_dilate (with 26 neighbors) * Menu Sources > Simulate recordings: * Do not close the 3D figures after generating a new file * Add a process equivalent to this menu * Panel Get coordinates: Add button "find maximum" * BEM single sphere: Get implementation from MNE * Unconstrained sources: * Stat and connectivity: what to do? (re-send email John+Sylvain) |
|
Line 64: | Line 219: |
* Images of amplitude: [sensor x time], [trial x time], scout: [trial x time] (similaire to erpimage in eeglab) * Simulation: synthesize pseudo data-files from a cortex patch (duration, amplitude, noise) == Source modeling == * Inverse: * Stable LCMV Beamformer * MUSIC * * Unconstrained sources: * Define as default * Check all the processes * Difference and stat should be: norm(A) - norm(B) * Overlapping spheres: improve the estimation of the spheres for the frontal lobes * Volume grid: * Scouts 3D * Test volume sources with all the subsequent processes (timefreq, stat...) * Optimize: 3D display (better that 9x9 cubes) * Optimize: vol_dilate (with 26 neighbors) * Optimize: grid_interp_mri * Magnetic extrapolation: * Do the same thing with EEG * Optimize bst_extrapm.m, add waitbar * Use the noise covariance from the database instead of recomputing it * Project sources: * Adapt smooth factor to the number of vertices * Number of neighbors to consider = average number of neighbors in the target mesh. * Compute by small time blocks * Noise covariance matrix: * Save nAvg in noisecov file, to make it easier to scale to other recordings * When deploying to other conditions: Apply destination SSP (!NoiseCov = SSP . !NoiseCov . SSP' ) |
* Process "Extract scouts time series": Add PCA option (replace isnorm with choice PCA/Norm) * Add eyes models to attract eye activity * Display source maps on a flat 2D cortex projection (Mollweide projection): https://neuroimage.usc.edu/forums/t/source-model-display-and-output/13940/5 |
Line 97: | Line 224: |
* Use BrainVISA / FreeSurfer labeling automatically when importing cortex surfaces * MRI import: auto-reorientation of MRI after selected NAS / LPA / RPA. |
* Keep ASEG volume + display region name in MRI viewer * Multi-Scale Brain Parcellator (Lausanne2008): * [[https://github.com/sebastientourbier/multiscalebrainparcellatorhttps://hub.docker.com/r/sebastientourbier/multiscalebrainparcellator|https://github.com/sebastientourbier/multiscalebrainparcellator]] * [[https://github.com/sebastientourbier/multiscalebrainparcellatorhttps://hub.docker.com/r/sebastientourbier/multiscalebrainparcellator|https://hub.docker.com/r/sebastientourbier/multiscalebrainparcellator]] * https://multiscalebrainparcellator.readthedocs.io/en/latest/ * MNI transformation: Use SPM non-linear MNI transformation y_... * Registration: * Getting electrode positions from 3D scanners: https://sccn.ucsd.edu/wiki/Get_chanlocs * GARDEL: http://meg.univ-amu.fr/wiki/GARDEL:presentation * Use the same registration for multiple recording sessions that have already re-registered previously (eg. with MaxFilter) * When linking multiple EEG recordings including 3D positions, do the registration only once and copy it to all the runs * Compute non-linear MNI registration instead of linear * Select and remove bad digitized head points before automatic coregistration * Load the MNE -transf.fif: http://neuroimage.usc.edu/forums/showthread.php?2830 * MRI Viewer: * Pan in zoomed view (shift + click + move?) * Zoom in/out with mouse (shift + scroll?) * Ruler tool to measure distances * Display scouts as additional volumes * Render surface envelope in the MRI as a thin line instead of the full interpolation matrix<<BR>>Or use inpolyhedron to get a surface mask and then erode it to get the volume envelope * Edit fiducials: Replace 6 text boxes with 1 for easy copy-paste (see fiducials.m) * Optimize computation interpolation MRI-surface (tess_tri_interp) => spm_mesh_to_grid * CAT12: Optimize interpolation of atlases (import is super slow...) * BrainSuite: * Add new labels to all BrainSuite anatomy templates * Use same colors for left and right for anatomical atlases * Use for volume coregistration (rigid / non-rigid) * FEM templates for different ages: * Pediatric head atlases: https://www.pedeheadmod.net/pediatric-head-atlases-v1-2/ * https://iopscience.iop.org/article/10.1088/2057-1976/ab4c76 * https://www.biorxiv.org/content/biorxiv/early/2020/02/09/2020.02.07.939447.full.pdf * MRI to FEM mesh generation : * Cut the MRI (T1 and T2) 40 mm below the skull along axial plan to avoid unnecessary fem time computation (recommendaion Lanfer et al 2012) * Process the FEM cortex/source space (either from CAT or SimNibs) and fit all the dipoles within the grey matter (important in the case where white matter and scf are considered) to acheive the Venant condition (also for other source models) * Scouts: * Display edges in the middle of the faces instead of the vertices * Display scouts in a tree: hemisphere, region, subregion * Sort scouts by region in process options * Downsample to atlas: allow on timefreq/connect files * Project from one hemisphere to the other using registered spheres/squares (http://neuroimage.usc.edu/forums/t/how-to-create-mirror-roi-in-the-other-hemisphere/5910/8) * Parcellating volume grids: scikit-learn.cluster.Ward |
Line 100: | Line 269: |
* Finalize Brodmann scouts * Remove NCS/Talairach coordinate system, or fix it => Sylvain, Karim ND * Clustering cortex: Dimitrios, David, Yu-Teng == Processes == * Other processes: * Moving average * Remove linear trend * Power line removal * Bug: gradnorm crashes with bad channels * Spatial smoothing: check / document parameters * Sinusoid removal: fix new function * Time-frequency: * Write script for timefreq tutorial * Make much faster and more memory efficient (C functions coded by Matti ?) * Power spectrum: computation (FFT/welch, or average of TF) + display(f/Power, 2DLayout) * Display stat computed on time-frequency data * Display TF maps separately for the two gradiometers (if not: overlap) * Source reconstruction by frequency bands * Scouts on surface / time-freq * Process selection interface: * Bug when redimensioning window (with more than one process) * isAvgRef: warning quand process necessite des donnees en AVG REF en entree * Save "freqband" option when edited from custom processes * John's noise cancellation filters * Chain calls of similar processes (ex. bandpass+sin_remove), to avoid reading the full raw files several times |
* Surface>Volume interpolation: Use spm_mesh_to_grid * Bug: Hide scouts in the preview of the grid for volume head models * Geodesic distance calculations:<<BR>>https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching == ECOG/SEEG == * Electrodes models: Import / export * Contact positions: Import / set / detect * New option: Align on none|inner|cortex to replace ECOG-mid * Add history: Save modifications and transformations applied to the channel files (Marcel) * Project contact positions across subjects or templates (Marcel) * Add menu to import implantation channel file in imported recordings * SEEG/ECOG: Identify contacts in resected areas / identify ROIs for each contact * SEEG/ECOG: Identify contacts in a give anatomical region (volume scout, surface mesh, or label in a volume atlas) / allow extracting the signals from all the contacts in an ROI * Automatic segmentation of CT: * GARDEL: http://meg.univ-amu.fr/wiki/GARDEL:presentation * Arnulfo: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0511-6 * MAP07 / SPM: https://www.epi.ch/_files/Artikel_Epileptologie/Huppertz_2_13.pdf * ECOG: * Project and display contacts on cortex surface should consider the rigidity of the grids: Contacts cannot rotate, and distance between contacts should remain constant across runs * Method for contacts projection: https://pdfs.semanticscholar.org/f10d/6b899d851f3c4b115404298d7b997cf1d5ab.pdf * ECOG: Brain shift: When creating contact positions on a post-implantation image, the brain shift should be taken into account for creating images of the ECOG contacts on the pre-op brain => iELVis (http://ielvis.pbworks.com/w/page/116347253/FrontPage) * Display: * Bad channels: Contacts greyed out instead of ignored (Marcel) * Display time in H:M:S * Display curved SEEG electrodes * Export list of contacts with a probability of anatomical regions from various atlases: https://neuroimage.usc.edu/forums/t/seeg-contacts-anatomical-location/14756 * Detection CEEP stim artifacts: Use ImaGIN code ImaGIN_StimDetect |
Line 128: | Line 298: |
* ANOVA: Use LENA functions | * ANOVA: * Which functions to use? * Write panel similar to Process1 and Process2 to allow the |
Line 131: | Line 303: |
* Permutation tests: * t-test only (wilcoxon? sign-test?): paired, equal var, unequal var * nb permutations ~ 1000 * maximum statistic over "time" or "time and space" * Permutations / clustering: cf fieldtrip * http://fieldtrip.fcdonders.nl/tutorial/cluster_permutation_timelock * http://fieldtrip.fcdonders.nl/tutorial/cluster_permutation_freq * Threshold in time: keep only the regions that are significative for contiguous blocks of time, or over a certain number of time points<<BR>> => Process that creates a static representation of a temporal window == Display == * OpenGL options: {none, software, hardware} * Colormap: Set colormap max with right-click + move on the colorbar * Bug: Mixing 2 views MRI/3d, white cuts appear after !SetCurrentFigure * Bug: Scout without overlay, adapt scale for each graph when "Uniformize" option is unchecked (mixing sources + zscores) * Waitbars: * Replace old waitbars with java ones * Add a "Cancel" button on waitbars when the bounds are defined (ie. when bst controls the process) * Contact sheets & movies: use average of time windows instead of single instants, for each picture. == I/O == |
* Quality control before statistics, on condition averages across subjects:<<BR>>mean(baseline)/std(baseline): shows bad subject quickly. * Use SurfStat: Impements interesting things, like an analytical cluster-based p-value correction (Random-field theory which is used in SPM) - Peter * Export to R or SPSS for advanced stat == Input / output == * Bug import multiple files: use same "time" for all files * BIDS import: * Read real fiducials * Read associated empty room * Test all the BIDS examples * BIDS Export: * Add events ts, channel tsv, EEG, iEEG * '''XDF import''': Use FieldTRip or the EEGLAB plugin, contact Martin Bleichner (Oldenburg)<<BR>>https://github.com/sccn/xdf/blob/master/xdf_sample.xdf * DICOM converter: * Add dcm2nii (MRICron) * Add MRIConvert * FieldTrip: Import/Export time-frequency: * Export: http://neuroimage.usc.edu/forums/t/export-time-frequency-to-fieldtrip/1968 * Import: http://neuroimage.usc.edu/forums/t/import-time-frequency-data-from-fieldtrip/2644 * 4D file format: * Use reader from MNE-Python: mne.io.read_raw_kit (doesn't require Yokogawa slow library) * Reference gradiometers: Keep the orientation of the first or second coil? * Reference gradiometers: Add the sensor definition from coil_def.dat * Validate with phantom recordings that noise compensation is properly taken into account * The noise compensation is considered to be always applied on the recordings, not sure this assumption is always correct * 4D phantom tutorial (JM Badier?) |
Line 152: | Line 331: |
* Nihon Kohden * EDF+ * !BrainVision / !BrainAmp: Get functions from EEGLAB * EEG !CeeGraph * NEUROFILE = COHERENCE EEG/video !LongTerm Monitoring => Manfred Spueler |
* EEG CeeGraph |
Line 158: | Line 333: |
* Other file formats * MEG160 (KIT) * CTF: * Read continuous RAW files split in several .meg4 files ( > 2 Go) * Read STIM channel and generate !MarkerFile * EEGLAB: Apply ICA matrices, get number of trials for AVG files * !FieldTrip structures: In / Out * Gzipped Nifti (new BrainVISA standard) * Analyze / Nifti:<<BR>> * Fix output function (output MRIs cannot be imported in SPM) * Use correctly field "orient" to align automatically MRI when importing * Define scouts from SPM / Analyze 3D masks * Files > 2Gb: display warnings == Programming details == * Double-click doesn't work well on some Linux workstations * Bug: Menu "Use default EEG cap" doesn't work for a multiple selection (setting the same EEG cap for several subjects) * Bug node selection: click on sources > TF: select node-source, not node-condition * Bug tree_dependencies: sources files, reprojected on default anatomy; If based on data files that are bad trials, they should be ignored by tree_dependencies, and they are not |
* XLTEK: https://github.com/danielmhanover/OpenXLT * Persyst .lay: https://github.com/ieeg-portal/Persyst-Reader * Nervus .eeg: https://github.com/ieeg-portal/Nervus-Reader * Biopac .acq: https://github.com/ieeg-portal/Biopac-Reader * gTec EEG recordings: Read directly from the HDF5 files instead of the Matlab exports. * BCI2000 Input (via EEGLAB plugin) * BST-BIN: Add compression to .bst * Review raw on all the file formats (ASCII EEG and Cartool missing) * SPM .mat/.dat: Fix the import of the EEG/SEEG coordinates * Get acquisition date from files: Missing for 4D * Support for OpenJData / JNIfTI: https://github.com/brainstorm-tools/brainstorm3/issues/284 == Distribution & documentation == * Tutorial OMEGA/BIDS: * Update the organization of derivatives folder (same for ECOG tutorial) * Add review of literature for the resting state MEG * Download example datasets directly from the OMEGA repository * New tutorials: <<BR>> * Other public datasets: [[https://github.com/INCF/BIDS-examples/tree/bep008_meg|https://github.com/INCF/BIDS-examples/tree/bep008_meg/]] * Rat PAC + high gamma (Soheila) * EEG/research * FieldTrip ECOG tutorial: http://www.fieldtriptoolbox.org/tutorial/human_ecog * FieldTrip cortico-muscular coherence tutorial: http://www.fieldtriptoolbox.org/tutorial/coherence * Reproduce tutorials from MNE-Python: https://martinos.org/mne/stable/tutorials.html * Cam-CAN database: https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/<<BR>>(download new datasets, including maxfiltered files and manual fiducial placements) * MEG steady-state / high-gamma visual / frequency tagging * BIDS-EEG example datasets * Stand-alone ICA tutorial * Move all the files to download to the cloud for faster download everywhere in the world * Provide secure way of sending password over HTTPS for: * Account creation * Forum exchanges * org.brainstorm.dialog.CloneControl * Workflows FieldTrip: http://www.fieldtriptoolbox.org/faq/what_types_of_datasets_and_their_respective_analyses_are_used_on_fieldtrip * Count GitHub clones in the the download stats * Deface the MRIs of all the tutorials * Clean up the wiki: * Remove all the wiki pages that are not used * Check all the links in all the pages * Check that all the TODO blocks have been properly handled * Remove useless images from all tutorials * Update page count on the main tutorials page == Current bugs == * Image viewer: * Difficult to get to 100% * Buggy on some systems * 2DLayout: * (TF) Units are weird with % values * (TF) Difficult to navigate in frequencies: Scaling+changing frequency resets the scaling * Progress bar: * Doesn't close properly on some Linux systems * Focus requests change workspace when processing constantly (Linux systems) * MacOS bugs: * Buttons {Yes,No,Cancel} listed backwards * Record tab: Text of epoch number is too big * Colormap menus: Do not work well on compiled MacOSX 10.9.5 and 10.10 * in_bst_data_multi: If trials have different sizes, output is random (the one of the first file) * Canolty maps computation: Fix progress bar == Geeky programming details == * bst_bsxfun: After 2016b, we can use directly the scalar operators (./ .* ...) instead of bsxfun. Update bst_bsxfun to skip the use of bsxfun when possible. * Interface scaling: Rewrite class IconLoader to scale only once the icons at startup instead of at each request of an icon (might improve the speed of the rendering of the tree) * Hide Java panels instead of deleting them * Processes with "radio" and "radio_line" options: Replace with "radio_label" and "radio_linelabel" * Interpolations: Use scatteredInterpolant, griddedInterpolant, triangulation.nearestNeighbor (2014b) |
Line 178: | Line 401: |
* Testing functions: test_ctf "folder" / test_neuromag "folder" / test "folder" => Alex * Bug in_bst_data_multi: If trials have different sizes, output is random (the one of the first file)... * sLORETA: Values are now multiplied by 1e12 at loading for display => has do to be done in another way * Shared kernels: do the "get bad channels" operation in a different way (reading all the files is too slow) * Write shepards.m with new algorithm for nearest neighbors * Use Matlab Coder to compile / optimize some processes == Distribution & documentation == * Version with big fonts for live demos * Add Help buttons and menus (in popups, dialog windows...) => Links to the website. * List of all the shortcuts * Send email to registered users to anounce major improvements * Script tutorials: * Update them to reflect all the recent changes * Script for the time-frequency computation * Introduction tutorials: * Estimate time to complete each tutorial * Clusters * Anatomy: Segmentation with !FreeSurfer * First steps: Brainstorm preferences * Headmodel: explain the fields + how to get the constrained leadfield * Coordinate sytems: How to convert between the different coordinates systems in scripts * Sources: Modelized data * Sources: theshold min. size (not documented yet) * Scouts: Atlases of Tzourio-Mazoyer and Brodman * Processes: Describe all the processes * Processes: How to write your own processes (user folder for processes) * Processes: Processing RAW files * Import raw recordings: Add "detect bad trials/channels" in the pipeline * Advanced tutorials: * MNE sample dataset * EEG (How to import an EEG cap) * MRI segmentation with !FreeSurfer => David Wheland * How to make and compress a movie (Brainstorm + !VirtualDub + XVid) * Display the "What's new" page after downloading new version of brainstorm * Ask users to send their channel files, align on Colin, distribute |
* Shared kernels: "get bad channels" operation in a different way (reading all the files is too slow) * Optimize bst_get: * Now study and subject have necessarily the same folder name * Replace big switch with separate functions * Fix all the 'todo' blocks in the code |
What's next
A roadmap to the future developments of Brainstorm.
Contents
Recordings
- Sleep scoring wish list (Emily C):
- Configurable horizontal lines (for helping detecting visually some thresholds)
- Mouse ruler: Measure duration and amplitude by dragging the mouse.
- Automatic spindle detector
https://neuroimage.usc.edu/forums/t/page-overlap-while-reviewing-raw-file-a-way-to-set-to-0/11229/13
- RAW file viewer:
- Downsample before filtering? (attention to the filter design)
- Add parameter to make the visual downsampling more or less aggressive
- Pre-load next page of recordings
- Keep the filter specifications in memory instead of recomputing for every page
- Bad trials: When changing the status of bad to good: remove the bad segments as well, otherwise it is not processed by processes like the PSD.
- Review clinical recordings: Reduce the dimensionality of the data with a simple inverse problem, similar to what we do for the magnetic extrapolation ("Regional sources" in BESA, cf S Rampp)
- MEG/EEG registration: Apply the same transformation to multiple runs
- Create heat maps: Maybe with matlab function heatmap?
Interface
Add a warning when computing a forward model with > 100000 sources (check selection)
- Snapshot: Save as image / all figures (similar to Movie/all figure)
Generalize the use of the units (field .DisplayUnits): Rewrite processes to save the units correctly
- Colormaps:
- Allow brightness/contrast manipulations on the custom colormaps
- Global colormap max: Should get the maximum across all the open files
- Copy figures to clipboard (with the screencapture function)
- Smooth display from figure_image (ERPimage, raster plot...)
Contact sheets & movies: use average of time windows instead of single instants, for each picture.
- Contact sheets: Allow explicit list of times in input (+ display as in MNE-Python with TS)
- Display CTF coils: Show discs instead of squares
- Use boundary() instead of conhull() in all the display functions (ie. 2DDisc)
- Progress bar: Add a "Cancel" button
- Error message: Add a link to report directly the bug on the forum
Reorganize menus (Dannie's suggestion):
Connectivity
- Thresholding and stat tests the connectivity matrices
- Connectivity on unconstrained sources: "Default signal extraction for volume grids should be the time series of the first principal component of the triplet signals after each has been zero-meaned" (SB)
- Display of connectivity graphs:
- Display as straight lines
- Recode 2D graphs
- 3D display with anatomical constrains
- Display using real position of EEG electrodes
- Use new band-pass filters in bst_connectivity ('bst-hfilter' instead of 'bst-fft-fir')
- Matrix view of NxN graphs: Add legend of the elements along X and Y axis
- Graph view:
- Does not display negative values correctly (correlation or difference of coherence)
- Re-write using pure Matlab code and smoothed graphics
- Fixed scales for intensity sliders
- Text bigger
- Too much data in appdata
- Fixed scales for intensity sliders
- Add "=" shortcut for having graphs with similar configurations
- Disable zoom in one region (serious bugs)
- NxN on sensors: does not place the sensors correctly in space
- Coherence:
Average cross-spectra instead of concatenating epochs (to avoid discontinuities)
Explore inter-trial approaches (Esther refers to chronux toolbox)
- Granger: Check for minimum time window (Esther: min around 500-1000 data points)
- PLV:
- Add p-values
- Remove evoked
- Optimize code
- Add time integration
- Unconstrained sources
- Add warning when running of short windows (because of filters)
- Time-resolved correlation/coherence: Display as time bands
Tutorial coherence [1xN] : Reproduce FieldTrip results?
Connect NxN: Display as time series > Display warning before trying to open too many signals
Processes
- Decoding/Classifiers: Implement Dimitrios and scikit-learn algorithms
- Allow processes in Python and Java
- Add MNE-Python functions:
- scikit-learn classifiers
- Implement data exchange with MNE-Python: write FIF files from Brainstorm and/or pass python objects in memory instead of FIF files
https://neuroimage.usc.edu/forums/t/best-way-to-export-to-mne-python/12704/3
- SSS/tSSS cleaning
- Reproduce other tutorials / examples
- Change the graphic renderer from Matlab
Add FieldTrip functions:
- ft_sourceanalysis:
- Check noise covariance
- Check all the options of all the methods
- Single trial reconstructions + noise covariance?
Filters?? http://www.fieldtriptoolbox.org/example/common_filters_in_beamforming
Beamformers: Save ftSource.avg.mom
http://www.fieldtriptoolbox.org/workshop/meg-uk-2015/fieldtrip-beamformer-demohttp://www.fieldtriptoolbox.org/tutorial/beamformingextended
- Baseline? Two inputs?
ft_prepare_sourcemodel: Compute MNI transformation (linear and non-linear) => Peter
- ft_prepare_heamodel: Add support from BEM surfaces from the Brainstorm database
- Freqanalysis: ITC
- ft_read_atlas('TTatlas+tlrc.BRICK');
ft_volumereslice: http://www.fieldtriptoolbox.org/faq/how_change_mri_orientation_size_fov
- ft_freqanalysis
- ft_combineplanar
- ft_sourceanalysis:
- Optimization:
- Use CUDA for speeding up some operations (filtering, wavelets, etc)
- Use Matlab Coder to optimize: Wavelets, bandpass filter, sinusoid removal
- Pipeline editor:
- Bug: After "convert to continuous", the time of the following processes should change
- Add loops over subjects/conditions/trial groups
- Events: Allow selection from a drop-down list (similar to option "channelname" in panel_process_selection)
- When computing sources from the pipeline editor: doesn't reselect the options if you click twice on "edit" (works for minnorm, but not for lcmv)
ITC: Inter-trial coherence (see MNE reports for group tutorial)
http://www.sciencedirect.com/science/article/pii/S1053811916304232- ICA:
- Why doesn't the ICA process converge when using 25 components in the EEG tutorial?
- Add an option to resample the signals before computing the ICA decomposition
- Exploration: Add window with spectral decomposition (useful for muscle artifacts)
- Export IC time series (and then compute their spectrum): solves the problem above
Comparison JADE/Infomax:
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030135- Use faster methods (MNE-Python?)
- Add methods: SOBI, Fastica, AMICA/CUDICA (recommended by S Makeig)
Dimension reduction with PCA adds artifacts: Not done by default in EEGLAB
Contact: Stephen Shall Jones ( shall-jones@infoscience.otago.ac.nz )
Student Carl Leichter detailed this in his thesis- S Makeig: Use ICA to select the IC of interest instead of only removing artifacts
- Display of spectrum for components (PSD/FFT)
- Import ICA matrices available in EEGLAB .set files
EEGLAB recommends ICA + trial rejection + ICA again: Impossible right now with Brainstorm
(http://sccn.ucsd.edu/wiki/Chapter_09:_Decomposing_Data_Using_ICA)ICA+machine learning: https://www.ncbi.nlm.nih.gov/pubmed/28497769
Automated artifact rejection: https://arxiv.org/abs/1612.08194
Use EYE-EEG: EEGLAB toolbox for eye-tracker guided ICA (Olaf Dimigen): http://www2.hu-berlin.de/eyetracking-eeg/
- Other EEGLAB functions:
Step function detection: https://github.com/lucklab/erplab/wiki/Artifact-Detection:-Tutorial
- SSP:
Display warning if changing the ChannelFlag while there is a Projector applied
- Spectral flattening (John):
- ARIMA(5,0,1): Apply on the signal before any frequency/connectivity/PAC analysis
- PSD:
- Rewrite to have the same input as coherence (frequency resolution instead of window length)
Allow display of Avg+StdErr
Remove line noise: http://www.nitrc.org/projects/cleanline
- Time-frequency:
- Optimization: bst_timefreq (around l.136), remove evoked in source space: Average should be computed in sensor space instead of source space (requested by Dimitrios)
Short-time Fourier transform: http://www.mikexcohen.com/lectures.html
Matching pursuit: http://m.jneurosci.org/content/36/12/3399.abstract?etoc
- Bug: Display logs as negative
- Bug: 3D figures: Colormaps with "log" option doesn't work
- Bug: Difference of power displayed in log: problems (Soheila)
- 2D Layout in spectrum
- Make much faster and more memory efficient (C functions coded by Matti ?)
- TF scouts: should display average of TF maps
- Impossible to keep complex values for unconstrained sources
- Pad short epochs with zero values for getting lower frequencies
- Hilbert with time bands very slow on very long files (eg. 3600s at 1000Hz) because the time vector is still full (10^7 values): save compressed time vector instead.
- Extend clusters tab to display of TF to overlay TF signals (Svet)
- When normalizing with baseline: Propagate with the edge effects marked in TFmask
- Allow baseline normalization of files computed with time bands
- Allow running TF on montages
- Review continuous files in time-frequency space (for epilepsy)
- Bug when computing TF on constrained and unconstrained scouts at the same time (in mixed head models for instance): uses only the constrained information and doesn't sum the 3 orientations for the unconstrained regions.
- Artifact detection:
- Artifact rejection like SPM: if bad in 20%, bad everywhere
- Test difference between adjacent samples
- Events detection: Add option "std" vs "amplitude"
- Simulation:
EEGSourceSim: https://www.sciencedirect.com/science/article/pii/S0165027019302341
Fix units in simulation processes => no *1e-9 in "simulate recordings"
- Use "add noise" process from Hui-Ling (in Work/Dev/Divers)
- Use field process field "Group" to separate Input/Processing/Output options
- Use new Matlab functions: movmean, movsum, movmedian, movmax, movmin, movvar, movstd
Database
- MEG protocols: More flexible organization of the database; sub-conditions to allow different runs X different conditions.
- Matrix files: Allow to be dependent from other files
- Rename multiple files
- Default headmodel lost when reloaded: Keep selection on the hard drive (in brainstormstudy.mat)
- Auto-save:
protocol.mat can be too big: do not store the results links in it (and recreate when loading)- http://neuroimage.usc.edu/forums/t/abnormally-slow-behavior/2065/10
- Improve auto-save: add tracking file next to protocol.mat, do not save all the time, only when closing app, and reload protocol at stratup if tracking file is still there
Distributed computing
Options from FieldTrip:
Loose collection of computers: https://github.com/fieldtrip/fieldtrip/tree/master/peer
Alternative, with less limitations: http://research.cs.wisc.edu/htcondor/
Single multicore machine: https://github.com/fieldtrip/fieldtrip/tree/master/engine
Batch system: https://github.com/fieldtrip/fieldtrip/tree/master/qsub
Documentation: http://fieldtrip.fcdonders.nl/faq#distributed_computing_with_fieldtrip_and_matlab
Various initiatives: http://samirdas.github.io/Data_sharing.html#/
Source modeling
Sensitivity maps: https://mne.tools/stable/auto_examples/forward/plot_forward_sensitivity_maps.html
Use eLORETA instead of sLORETA?
https://neuroimage.usc.edu/forums/t/compute-eeg-sources-with-sloreta/13425/6"eLORETA algorithm is available in the MEG/EEG Toolbox of Hamburg (METH)": https://www.biorxiv.org/content/biorxiv/early/2019/10/17/809285.full.pdf
- Point-spread and cross-talk functions (code in MNE-Python):
- Dipoles:
- Project individual dipoles files on a template
- panel_dipoles: Doesn't work with multiple figures
- Project sources: Very poor algorithm to project sub-cortical regions and cerebellum (algorithm to fit surfaces should be imrpoved)
Menu head model > Copy to other conditions/subjects (check if applicable first)
Menu Sources > Maximum value: Doesn't work with volume or mixed head models
- Mixed head models:
- Set loose parameter from the interface
- Bug when displaying interpolated in MRI viewer
- Volume grid:
- Optimize: 3D display (better than 9x9 cubes)
- Optimize: vol_dilate (with 26 neighbors)
Menu Sources > Simulate recordings:
- Do not close the 3D figures after generating a new file
- Add a process equivalent to this menu
- Panel Get coordinates: Add button "find maximum"
- BEM single sphere: Get implementation from MNE
- Unconstrained sources:
- Stat and connectivity: what to do? (re-send email John+Sylvain)
Sources on surface: Display peak regions over time (time = color) => A.Gramfort
- Process "Extract scouts time series": Add PCA option (replace isnorm with choice PCA/Norm)
- Add eyes models to attract eye activity
Display source maps on a flat 2D cortex projection (Mollweide projection): https://neuroimage.usc.edu/forums/t/source-model-display-and-output/13940/5
Anatomy
- Keep ASEG volume + display region name in MRI viewer
- Multi-Scale Brain Parcellator (Lausanne2008):
- MNI transformation: Use SPM non-linear MNI transformation y_...
- Registration:
Getting electrode positions from 3D scanners: https://sccn.ucsd.edu/wiki/Get_chanlocs
Use the same registration for multiple recording sessions that have already re-registered previously (eg. with MaxFilter)
- When linking multiple EEG recordings including 3D positions, do the registration only once and copy it to all the runs
- Compute non-linear MNI registration instead of linear
- Select and remove bad digitized head points before automatic coregistration
Load the MNE -transf.fif: http://neuroimage.usc.edu/forums/showthread.php?2830
- MRI Viewer:
- Pan in zoomed view (shift + click + move?)
- Zoom in/out with mouse (shift + scroll?)
- Ruler tool to measure distances
- Display scouts as additional volumes
Render surface envelope in the MRI as a thin line instead of the full interpolation matrix
Or use inpolyhedron to get a surface mask and then erode it to get the volume envelope- Edit fiducials: Replace 6 text boxes with 1 for easy copy-paste (see fiducials.m)
Optimize computation interpolation MRI-surface (tess_tri_interp) => spm_mesh_to_grid
- CAT12: Optimize interpolation of atlases (import is super slow...)
BrainSuite:
Add new labels to all BrainSuite anatomy templates
- Use same colors for left and right for anatomical atlases
- Use for volume coregistration (rigid / non-rigid)
- FEM templates for different ages:
Pediatric head atlases: https://www.pedeheadmod.net/pediatric-head-atlases-v1-2/
https://www.biorxiv.org/content/biorxiv/early/2020/02/09/2020.02.07.939447.full.pdf
- MRI to FEM mesh generation :
- Cut the MRI (T1 and T2) 40 mm below the skull along axial plan to avoid unnecessary fem time computation (recommendaion Lanfer et al 2012)
Process the FEM cortex/source space (either from CAT or SimNibs) and fit all the dipoles within the grey matter (important in the case where white matter and scf are considered) to acheive the Venant condition (also for other source models)
- Scouts:
- Display edges in the middle of the faces instead of the vertices
- Display scouts in a tree: hemisphere, region, subregion
- Sort scouts by region in process options
- Downsample to atlas: allow on timefreq/connect files
Project from one hemisphere to the other using registered spheres/squares (http://neuroimage.usc.edu/forums/t/how-to-create-mirror-roi-in-the-other-hemisphere/5910/8)
- Parcellating volume grids: scikit-learn.cluster.Ward
- Major bug when importing surfaces for an MRI that was re-oriented manually
Surface>Volume interpolation: Use spm_mesh_to_grid
- Bug: Hide scouts in the preview of the grid for volume head models
Geodesic distance calculations:
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching
ECOG/SEEG
- Electrodes models: Import / export
- Contact positions: Import / set / detect
- New option: Align on none|inner|cortex to replace ECOG-mid
- Add history: Save modifications and transformations applied to the channel files (Marcel)
- Project contact positions across subjects or templates (Marcel)
- Add menu to import implantation channel file in imported recordings
- SEEG/ECOG: Identify contacts in resected areas / identify ROIs for each contact
- SEEG/ECOG: Identify contacts in a give anatomical region (volume scout, surface mesh, or label in a volume atlas) / allow extracting the signals from all the contacts in an ROI
- Automatic segmentation of CT:
- ECOG:
- Project and display contacts on cortex surface should consider the rigidity of the grids: Contacts cannot rotate, and distance between contacts should remain constant across runs
Method for contacts projection: https://pdfs.semanticscholar.org/f10d/6b899d851f3c4b115404298d7b997cf1d5ab.pdf
ECOG: Brain shift: When creating contact positions on a post-implantation image, the brain shift should be taken into account for creating images of the ECOG contacts on the pre-op brain => iELVis (http://ielvis.pbworks.com/w/page/116347253/FrontPage)
- Display:
- Bad channels: Contacts greyed out instead of ignored (Marcel)
- Display time in H:M:S
- Display curved SEEG electrodes
Export list of contacts with a probability of anatomical regions from various atlases: https://neuroimage.usc.edu/forums/t/seeg-contacts-anatomical-location/14756
Detection CEEP stim artifacts: Use ImaGIN code ImaGIN_StimDetect
Statistics
- ANOVA:
- Which functions to use?
- Write panel similar to Process1 and Process2 to allow the
- Output = 1 file per effect, all grouped in a node "ANOVA"
- Display several ANOVA maps (from several files) on one single figure, using a "graphic accumulator", towards which one can send any type of graphic object
Quality control before statistics, on condition averages across subjects:
mean(baseline)/std(baseline): shows bad subject quickly.Use SurfStat: Impements interesting things, like an analytical cluster-based p-value correction (Random-field theory which is used in SPM) - Peter
- Export to R or SPSS for advanced stat
Input / output
- Bug import multiple files: use same "time" for all files
- BIDS import:
- Read real fiducials
- Read associated empty room
- Test all the BIDS examples
- BIDS Export:
- Add events ts, channel tsv, EEG, iEEG
XDF import: Use FieldTRip or the EEGLAB plugin, contact Martin Bleichner (Oldenburg)
https://github.com/sccn/xdf/blob/master/xdf_sample.xdf- DICOM converter:
- Add dcm2nii (MRICron)
- Add MRIConvert
FieldTrip: Import/Export time-frequency:
- 4D file format:
- Use reader from MNE-Python: mne.io.read_raw_kit (doesn't require Yokogawa slow library)
- Reference gradiometers: Keep the orientation of the first or second coil?
- Reference gradiometers: Add the sensor definition from coil_def.dat
- Validate with phantom recordings that noise compensation is properly taken into account
- The noise compensation is considered to be always applied on the recordings, not sure this assumption is always correct
- 4D phantom tutorial (JM Badier?)
- EEG File formats:
EEG CeeGraph
- EGI: Finish support for epoched files (formats 3,5,7)
Persyst .lay: https://github.com/ieeg-portal/Persyst-Reader
Nervus .eeg: https://github.com/ieeg-portal/Nervus-Reader
Biopac .acq: https://github.com/ieeg-portal/Biopac-Reader
- gTec EEG recordings: Read directly from the HDF5 files instead of the Matlab exports.
- BCI2000 Input (via EEGLAB plugin)
- BST-BIN: Add compression to .bst
- Review raw on all the file formats (ASCII EEG and Cartool missing)
- SPM .mat/.dat: Fix the import of the EEG/SEEG coordinates
- Get acquisition date from files: Missing for 4D
Support for OpenJData / JNIfTI: https://github.com/brainstorm-tools/brainstorm3/issues/284
Distribution & documentation
- Tutorial OMEGA/BIDS:
- Update the organization of derivatives folder (same for ECOG tutorial)
- Add review of literature for the resting state MEG
- Download example datasets directly from the OMEGA repository
New tutorials:
Other public datasets: https://github.com/INCF/BIDS-examples/tree/bep008_meg/
- Rat PAC + high gamma (Soheila)
- EEG/research
FieldTrip ECOG tutorial: http://www.fieldtriptoolbox.org/tutorial/human_ecog
FieldTrip cortico-muscular coherence tutorial: http://www.fieldtriptoolbox.org/tutorial/coherence
Reproduce tutorials from MNE-Python: https://martinos.org/mne/stable/tutorials.html
Cam-CAN database: https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/<<BR>>(download new datasets, including maxfiltered files and manual fiducial placements)
- MEG steady-state / high-gamma visual / frequency tagging
- BIDS-EEG example datasets
- Stand-alone ICA tutorial
- Move all the files to download to the cloud for faster download everywhere in the world
- Provide secure way of sending password over HTTPS for:
- Account creation
- Forum exchanges
org.brainstorm.dialog.CloneControl
Workflows FieldTrip: http://www.fieldtriptoolbox.org/faq/what_types_of_datasets_and_their_respective_analyses_are_used_on_fieldtrip
Count GitHub clones in the the download stats
- Deface the MRIs of all the tutorials
- Clean up the wiki:
- Remove all the wiki pages that are not used
- Check all the links in all the pages
- Check that all the TODO blocks have been properly handled
- Remove useless images from all tutorials
- Update page count on the main tutorials page
Current bugs
- Image viewer:
- Difficult to get to 100%
- Buggy on some systems
- 2DLayout:
- (TF) Units are weird with % values
- (TF) Difficult to navigate in frequencies: Scaling+changing frequency resets the scaling
- Progress bar:
- Doesn't close properly on some Linux systems
- Focus requests change workspace when processing constantly (Linux systems)
- MacOS bugs:
- Buttons {Yes,No,Cancel} listed backwards
- Record tab: Text of epoch number is too big
- Colormap menus: Do not work well on compiled MacOSX 10.9.5 and 10.10
- in_bst_data_multi: If trials have different sizes, output is random (the one of the first file)
- Canolty maps computation: Fix progress bar
Geeky programming details
- bst_bsxfun: After 2016b, we can use directly the scalar operators (./ .* ...) instead of bsxfun. Update bst_bsxfun to skip the use of bsxfun when possible.
Interface scaling: Rewrite class IconLoader to scale only once the icons at startup instead of at each request of an icon (might improve the speed of the rendering of the tree)
- Hide Java panels instead of deleting them
- Processes with "radio" and "radio_line" options: Replace with "radio_label" and "radio_linelabel"
- Interpolations: Use scatteredInterpolant, griddedInterpolant, triangulation.nearestNeighbor (2014b)
- bst_warp and channel_project: Use tess_parametrize_new instead of tess_parametrize
- Shared kernels: "get bad channels" operation in a different way (reading all the files is too slow)
- Optimize bst_get:
- Now study and subject have necessarily the same folder name
- Replace big switch with separate functions
- Fix all the 'todo' blocks in the code