11665
Comment:
|
22347
|
Deletions are marked like this. | Additions are marked like this. |
Line 4: | Line 4: |
== Current topics == ==== Data acquisition ==== * Improve the acquisition of the head points and the registration MEG / MRI * Real-time processing and display (based on !FieldTrip realtime module) * Support for intra-cranial recordings ==== Pre-processing ==== * Correction for head movements (using the continuous head localization coils) ==== Source modeling ==== * Computation of equivalent current dipoles * Display results of CTF SAM beamformer ==== Functionnal connectivity ==== * Integration of different metrics to study the brain connectivity: <<BR>>Correlation, coherence, Granger causality, phase locking value * Development of new ways to represent the connectivity between sensors or brain regions ==== Data management ==== * Filter the display of the tree by type / name / tag ==== Large scale analysis ==== * Parallel processing: Reduce the computation times using the parallel processing toolbox * Distributed processing: Integrate tools for sending Brainstorm processes on computation clusters <<BR>><<BR>><<BR>> |
<<TableOfContents(2,2)>> |
Line 31: | Line 7: |
* RAW file viewer: * Pre-load next page of recordings * Allow multiple RAW windows * Screen setups * Time scale: define in fixed s/mm (like the CTF tools) * Secondary windows: display length of time selection * If "Use SSP " option is selected, automatically select "Remove baseline" and "CTF compensations" * Documentation: Add definition of bad segments * Set the amplidute cale for the time series * CTRL+S : Save modifications * RAW processing: * Make it work for all the file formats(at least bandpass filter) * Events: advanced process for recombining. Example: http://www.erpinfo.org/erplab/erplab-documentation/manual/Binlister.html * Imported recordings: Offer the same interface as the RAW viewer: * Scroll bar * Events viewer / editor * Re-epoch (import from files in database) * SSP * Bad channels that can be specified at the program level (for sites that have permanently bad channels) => AS Dubarry * Colormaps: * Define manually minimum => 3 options: [0,max], [-max,max], [min,max] * Create a colormap similar to MNE, where extrema are bright * Grey out the portion of the colorbars not displayed because of the threshold * bst_selections: * Add user defined combinations of sensors (eg. "double banana" for EEG) * Use this to produce "inversed polarity" displayes too (useful in EEG) * Import data: * Save properties "baseline" and "resample" at the level of the protocol (to re-use for all the files) * NIRS: * Add new data type * Display of sensors by pairs oxy/deoxy (red/blue), overlaid * Intracranial electrodes: * Define and display in the MRI viewer * Images of amplitude: [sensor x time], [trial x time], scout: [trial x time] (similaire to erpimage in eeglab) |
* Review signals in time-frequency space * Events processes: Select events names from a list instead of having to type them * Display CTF coils: Show discs instead of squares * Sleep scoring wish list (Emily C): * Configurable horizontal lines (for helping detecting visually some thresholds) * Mouse ruler: Measure amplitude by dragging the mouse. * Automatic spindle detector * https://neuroimage.usc.edu/forums/t/page-overlap-while-reviewing-raw-file-a-way-to-set-to-0/11229/13 * RAW file viewer speed (Low priority) :<<BR>> * Consider to change to a format that is faster to read * Add parameter to make the visual downsampling more or less aggressive * Keep the filter specifications in memory instead of recomputing for every page<<BR>>(Nice to have) * BioSemi: Add menu "Convert naming system" to rename channels into 10-10 (A1=>FPz) * Simulations: https://github.com/lrkrol/SEREEGA(Low priority) == ECOG/SEEG == * https://www.sciencedirect.com/science/article/pii/S1053811922005559 * Display (high-priority)(Part SEEG grant): * Group display: Overlay multiple channel files in the same figure, coloring contacts by subject/ROI/Cluster/Electrode name * https://neuroimage.usc.edu/forums/t/37617 * iEEG tab must be read-only when multiple files (hide configuration controls) * Bad channels: Contacts greyed out instead of ignored (Marcel H, Germany)<<BR>>(To diff between band and not-recorded) > Rendering of SEEG electrodes: Full surface modelling with surface mesh (see Lead-DBS models + code that generates them?) * Display time in H:M:S instead of S > If there is t0 in H:M:S instead of S > As an option in Display configuration button>x-axis * view_leadfield_sensitivity: Add closing surfaces at cortex limits * Create clusters from anatomical labels (Anne So) : * Identify contacts in a given anatomical region (volume scout, surface mesh, or label in a volume atlas) / allow extracting the signals from all the contacts in an ROI> As a process to select recordings, then Scouts from Volumen Atlas, Create cluster in channel file, then Extract time series. * Group analysis: extract clusters across subjects, display or average signals (see MIA) (Anne So) * Spike detection (Need to check for current toolboxes from scratch)(contact Nicolas R)(Mosher J)(iEEG BIDS): * https://iopscience.iop.org/article/10.1088/1741-2552/ac9259/pdf * Automatic segmentation of CT: * LeGUI: https://github.com/Rolston-Lab/LeGUI/tree/main/LeGUI<<BR>>https://neuroimage.usc.edu/forums/t/automatic-localization-of-seeg-electrodes/36302/7 * GARDEL: http://meg.univ-amu.fr/wiki/GARDEL:presentation * SEEG DEETO Arnulfo 2015: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0511-6 * Used routinely at Niguarda Hospital + other hospitals worldwide, reliable tool. * To be used with SEEG-assistant/3DSlicer: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1545-8 * ECOG Centracchio 2021: https://link.springer.com/content/pdf/10.1007/s11548-021-02325-0.pdf * Classifier on thresholded CT: https://github.com/Jcentracchio/Automated-localization-of-ECoG-electrodes-in-CT-volumes * SEEG Granados 2018 (no code shared): https://link.springer.com/content/pdf/10.1007/s11548-018-1740-8.pdf * ECOG: * Project and display contacts on cortex surface should consider the rigidity of the grids: Contacts cannot rotate, and distance between contacts should remain constant across runs * Method for contacts projection: https://pdfs.semanticscholar.org/f10d/6b899d851f3c4b115404298d7b997cf1d5ab.pdf * ECOG: Brain shift: When creating contact positions on a post-implantation image, the brain shift should be taken into account for creating images of the ECOG contacts on the pre-op brain => iELVis (http://ielvis.pbworks.com/w/page/116347253/FrontPage) <<BR>>Normalization MNI? solutions with FieldTrip? * Display CT images: Better brightness/contrast adjustment: https://neuroimage.usc.edu/forums/t/automatic-localization-of-seeg-electrodes/36302/8 Range of values is way diff than ones from MRI. Current color maps are not suitable for CT, need to be improved.Together with processing of CT to get electrode positions. * Detection CCEP stim artifacts: Use ImaGIN code ImaGIN_StimDetect https://f-tract.eu/software/imagin/ == Pre-processing == * process_detectbad: * Allow on raw files (for bad channels only) * Add detection on derivative of the signal (see EEGLAB) * Document in tutorial Bad channels * PREP pipeline / EEGLAB (Bigdely-Shamlo 2015) * Improve bad channel/trial detection: * ft_artifact_threshold and ft_rejectartifact * MNE-Python * EEGLAB * Integrate with EYE-EEG (Olaf Dimigen) * Reproduce tutorial: https://www.eyetracking-eeg.org/tutorial.html * Create EYE-EEG plugin + processes (Raphael Lambert) * Process: Detect sacades (extended events) + fixations * Improved ICA * Eye-movement related potentials * Add note when rejecting trials: https://neuroimage.usc.edu/forums/t/33686 * ICA: <<BR>> * Automatic classification: ICLabel: https://neuroimage.usc.edu/forums/t/automatic-eeg-ic-ica-classification-for-brainstorm/33785 * Exploration: Add window with spectral decomposition (useful for muscle artifacts) * Export IC time series (and then compute their spectrum): solves the problem above * Import ICA matrices available in EEGLAB .set files * ICA+machine learning: https://www.ncbi.nlm.nih.gov/pubmed/28497769 * Automated artifact rejection: https://arxiv.org/abs/1612.08194 * Use EYE-EEG: EEGLAB toolbox for eye-tracker guided ICA (Olaf Dimigen): http://www2.hu-berlin.de/eyetracking-eeg/ * SSP: * Display warning if changing the ChannelFlag while there is a Projector applied * File format: * Add support to read GDF file format https://github.com/donnchadh/biosig/blob/master/biosig/t200_FileAccess/sload.m * <<BR>> * == Reproducibility toolbox == * Generate fully reproducible scripts, including all the interactive/graphical parts * Record all GUI actions as script calls * Import window: Add button to create the corresponding processing pipeline (to generate script or to edit additional options) * Adding the list of plugins to the reports (optionnal or foldable) * Better provenance: History fields, uniform file names... * Improving the pipeline editor to handle loops over data files or subjects == Interface == * Add a warning when computing a forward model with > 100000 sources (check selection) * Colormaps: Global colormap max: Should get the maximum across all the open files * Snapshot: * Save as image / all figures (similar to Movie/all figure) * Copy figures to clipboard (with the screencapture function) * Contact sheets & movies: use average of time windows instead of single instants, for each picture. * Contact sheets: Allow explicit list of times in input (+ display as in MNE-Python with TS) == Database == * Save iHeadModel somewhere in the datbase structure * Generalize the use of the units (field .DisplayUnits): Save in source files |
Line 67: | Line 143: |
* Figures: interaction with sensor selection / scouts selections * Calculation and use of p-values for the metrics * Trial analysis: Concatenations rather than averages for most metrics * Optimize bst_coherence * Display NxN as 1xN * Adapt colormaps for correlation (min and max properties) * PLV: Add a time integration * Work on progress bars * Circle plot: * Display Neuromag sensors * Use little squares * Little squares with scout color instead of point * Max distance slider: useless * Event-related coherence? |
* Thresholding and stat tests for connectivity matrices: * Panel Display: Show only the top N% measures * Misic: https://www.nature.com/articles/s41583-022-00601-9 * {{attachment:connect_toolboxes.jpg}} * Connect NxN display: * Graph on sensors: does not place the sensors correctly in space * Display as image: Add legend of the elements along X and Y axis * Display as time series: Display warning before trying to open too many signals * Optimize display: use surface() instead of line() for links? (as in figure_3d/PlotFibers) * Time-resolved correlation/coherence: Display as time bands |
Line 83: | Line 158: |
* Add MNE-Python functions: * scikit-learn classifiers * BEM single layer (John wants to test it) * ICA: https://neuroimage.usc.edu/forums/t/ica-on-very-long-eeg/23556/4 * https://neuroimage.usc.edu/forums/t/best-way-to-export-to-mne-python/12704/3 * Reproduce other tutorials / examples * Point-spread functions (PSFs) and cross-talk functions: https://mne.tools/stable/auto_examples/inverse/plot_psf_ctf_vertices.html#sphx-glr-auto-examples-inverse-plot-psf-ctf-vertices-py * Spatial resolution metrics in source space:<<BR>>https://mne.tools/stable/auto_examples/inverse/plot_resolution_metrics.html#sphx-glr-auto-examples-inverse-plot-resolution-metrics-py * Change the graphic renderer from Matlab * Chronux toolbox : http://chronux.org/ * Add FieldTrip functions: * ft_sourceanalysis: * Check noise covariance * Check all the options of all the methods * Single trial reconstructions + noise covariance? * Filters?? http://www.fieldtriptoolbox.org/example/common_filters_in_beamforming * Beamformers: Save ftSource.avg.mom <<BR>>http://www.fieldtriptoolbox.org/workshop/meg-uk-2015/fieldtrip-beamformer-demo * http://www.natmeg.se/ft_beamformer/beamformer.html * http://www.fieldtriptoolbox.org/tutorial/beamformingextended * Baseline? Two inputs? * ft_prepare_heamodel: Add support from BEM surfaces from the Brainstorm database * Freqanalysis: ITC * ft_volumereslice: http://www.fieldtriptoolbox.org/faq/how_change_mri_orientation_size_fov * ft_freqanalysis * ft_combineplanar * Optimization: * Test speed for writing files: <<BR>>https://undocumentedmatlab.com/articles/improving-fwrite-performance * Use CUDA for speeding up some operations (filtering, wavelets, etc) * Use Matlab Coder to optimize: Wavelets, bandpass filter, sinusoid removal * Pipeline editor: * Bug: After "convert to continuous", the time of the following processes should change * Add loops over subjects/conditions/trial groups * Events: Allow selection from a drop-down list (similar to option "channelname" in panel_process_selection) * ITC: Inter-trial coherence (see MNE reports for group tutorial)<<BR>>http://www.sciencedirect.com/science/article/pii/S1053811916304232 * Remove line noise: http://www.nitrc.org/projects/cleanline |
|
Line 84: | Line 212: |
* Stat computed on time-frequency data * Validate all the operations on the time-freq files (check for mixed Measures) * Frequency bands: extended syntax (ex: [2 3 4], 10:5:90, ...) * Scouts values for timefreq on surfaces * How to combine 3 orientations for unconstrained sources * Display logs as negative * 2D Layout in spectrum * Make much faster and more memory efficient (C functions coded by Matti ?) * Parallel processing: Use parfor * Distributed processing: * Version of Brainstorm that can run without JAVA * Use the BIC/MEG cluster from the pipeline interface (PSOM, P.Bellec) * SSP: * Display warning if changing the !ChannelFlag while there is a Projector applied * When processing multiple files: waitbar is not behaving well * Average: * Remember how many trials were used per channel * By subject AND condition * Save standard deviation * Display standard deviation as a halo around the time series * Co-registration of MEG runs: * SSP: Group projectors coming from different files * Finish validation of the method * Apply to continuous recordings for correcting for head movements (using head position coils) * Current Source Density (CSD) => Ghislaine<<BR>>http://psychophysiology.cpmc.columbia.edu/software/CSDtoolbox/index.html * Other processes: * Moving average * Max * Median * Significance test (Dimitrios, Leo) * Spatial smoothing: check / document parameters * Contact sheets & movies: use average of time windows instead of single instants, for each picture. == Database == * Filter display of the database explorer (filename, file type, comment...) * MEG protocols: More flexible organization of the database; sub-conditions to allow different runs X different conditions. * GUI: Save configuration of windows (per protocol) * Add notes in the folders (text files, visible as nodes in the tree) |
* Optimization: bst_timefreq (around l.136), remove evoked in source space: Average should be computed in sensor space instead of source space (requested by Dimitrios) * Short-time Fourier transform: http://www.mikexcohen.com/lectures.html * Hilbert with time bands very slow on very long files (eg. 3600s at 1000Hz) because the time vector is still full (10^7 values): save compressed time vector instead. * When normalizing with baseline: Propagate with the edge effects marked in TFmask * Allow running TF on montages * Review continuous files in time-frequency space (for epilepsy) * Bug when computing TF on constrained and unconstrained scouts at the same time (in mixed head models for instance): uses only the constrained information and doesn't sum the 3 orientations for the unconstrained regions. * * requested feature from the forum: https://neuroimage.usc.edu/forums/t/event-export-and-process-find-maximum-value-amplitude/41911/2 * * == Anatomy == * Import SimNIBS4: Use final_tissues_LUT.txt instead of fixed list of tissues: https://neuroimage.usc.edu/forums/t/removing-a-lesioned-area/38414/20 * Simple-brain-plot: https://github.com/dutchconnectomelab/Simple-Brain-Plot * MNI normalization: More options: * DARTEL / SHOOT * BrainSuite (wait for Anand) * Import from SimNIBS (Conform2MNI_nonl.nii.gz, MNI2Conform_nonl.nii.gz) * MRI Viewer: * Adjust CT contrast better: https://neuroimage.usc.edu/forums/t/automatic-localization-of-seeg-electrodes/36302/10 * Pan in zoomed view (shift + click + move?) * Zoom in/out with mouse (shift + scroll?) * Ruler tool to measure distances * Display scouts as additional volumes * Render surface envelope in the MRI as a thin line instead of the full interpolation matrix<<BR>>Or use inpolyhedron to get a surface mask and then erode it to get the volume envelope * Surface>Volume interpolation: Use '''spm_mesh_to_grid''' instead of tess_tri_interp * Defacing: * https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/tutorials/refacer/refacer_run.html * Removing MNI face mask using MNI coordinates * Atlas switch in 3D MRI figures * Bug import anatomy: Requested nVert > high-resolution cortex surface: Creates an empty cortex_0V * BrainSuite: * Use same colors for left and right for anatomical atlases * Use for volume coregistration (rigid / non-rigid) * USCBrain: Add default electrodes positions * Remove BrainSuite1 when not needed anymore * Brain2mesh: Add import of 10-10 positions * Templates for different ages: * MNI: https://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj1 * Pediatric head atlases: https://www.pedeheadmod.net/pediatric-head-atlases-v1-2/ * https://iopscience.iop.org/article/10.1088/2057-1976/ab4c76 * https://www.biorxiv.org/content/biorxiv/early/2020/02/09/2020.02.07.939447.full.pdf * John Richards: https://www.nitrc.org/frs/?group_id=1361 * Neurodev database: https://jerlab.sc.edu/projects/neurodevelopmental-mri-database/ * https://openneuro.org/datasets/ds000256/versions/00002 * https://osf.io/axz5r/ * Scouts: * Display edges in the middle of the faces instead of the vertices * Parcellating volume grids: scikit-learn.cluster.Ward * Geodesic distance calculations:<<BR>>https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching * Improving the registration between EEG and anatomy templates: * Warping: Improve the basic alignment of the digitized electrodes on the templat, possibly with Cz and other anatomical landmarks * EEG template positions: rework using a standardized Cz position (+ other landmarks) == Forward modeling == * DUNEuro/FEM: * Add lesion mask to SimNIBS: https://simnibs.github.io/simnibs/build/html/documentation/command_line/add_tissues_to_upsampled.html#add-tissues-to-upsampled-doc * GeomtryAdapted: Buggy? * Display differences between leadfields: amplitude of difference (right-click > Compare) * Display sensitivity on FEM surface * OpenMEEG: Detect bad results + exclude from leadfield * BEM single sphere: Get implementation from MNE * Add eyes models to attract eye activity |
Line 125: | Line 305: |
* Dipole fitting * Scouts: * Represent border as the middle of the adjacent triangles (to have a full segmentation) * Visualize Beamformer results (contact Zainab Fatima): * Read CTF SAM .svl * Create new file type in the database * Display as layers in the MRI viewer * Unconstrained sources: * Compute unconstrained and then project on the normal ? * Define as default * Check all the processes * Difference and stat should be: norm(A) - norm(B) * Overlapping spheres: improve the estimation of the spheres for the frontal lobes |
* Reproduce results in "Simultaneous human intracerebral stimulation and HD-EEG, ground-truth for source localization methods": https://www.nature.com/articles/s41597-020-0467-x * eLORETA instead of sLORETA? * https://neuroimage.usc.edu/forums/t/compute-eeg-sources-with-sloreta/13425/6 * https://neuroimage.usc.edu/forums/t/loreta-and-source-localization/30525 * "eLORETA algorithm is available in the MEG/EEG Toolbox of Hamburg (METH)": https://www.biorxiv.org/content/biorxiv/early/2019/10/17/809285.full.pdf * https://github.com/brainstorm-tools/brainstorm3/issues/114 * Point-spread and cross-talk functions (code in MNE-Python): * https://www.biorxiv.org/content/biorxiv/early/2019/06/18/672956.full.pdf * https://github.com/olafhauk/EEGMEGResolutionAtlas * Dipoles: * Display dipoles in MRI viewer * panel_dipoles: Doesn't work with multiple figures * Project sources: Very poor algorithm to project sub-cortical regions and cerebellum * Maximum: * Menu Sources > Maximum value: Doesn't work with volume or mixed head models * Panel Get coordinates: Add button "find maximum" * Sources on surface: Display peak regions over time (time = color) => A.Gramfort |
Line 139: | Line 333: |
* Scouts 3D * Test volume sources with all the subsequent processes (timefreq, stat...) * Optimize: 3D display (better that 9x9 cubes) |
* Optimize: 3D display (better than 9x9 cubes) |
Line 143: | Line 335: |
* Optimize: grid_interp_mri * Magnetic extrapolation: * Do the same thing with EEG * Project sources: * Adapt smooth factor to the number of vertices * Number of neighbors to consider = average number of neighbors in the target mesh. * Compute by small time blocks * Noise covariance matrix: * Storage of multiple noise covariance matrices (just like the head models) * Always save as full, then at inversion time, we can decide between full, heteroskedastic (diagonal) or homoskedastic (i.i.d, scalar) * Problem of having inividual trials + averages in the condition => Display warning or not? * Save nAvg in noisecov file, to make it easier to scale to other recordings * When deploying to other conditions: Apply destination SSP (!NoiseCov = SSP . !NoiseCov . SSP' ) * Sources on surface: Display peak regions over time (time = color) => A.Gramfort * Simulation: synthesize pseudo data-files from a cortex patch (duration, amplitude, noise) * Calculate !ImagingKernel * Gain for a scout == Anatomy == * Use the FreeSurfer subject co-registration (downsample: keep the correspondance) * Import / registration: * Improve ICP registration headpoints / scalp (chanfrein, multi-resolution, see with C Grova...) * Auto-reorientation of MRI after selected NAS / LPA / RPA * Major bug when importing surfaces for an MRI that was re-oriented manually * ICBM brain * MINC MRI reader: EMMA, NIAK (Pierre Bellec), HDF5 directly read in Matlab * ICBM average surfaces + atlas * Using CIVET pipeline for extracting surfaces * Clustering cortex: Dimitrios, David, Yu-Teng |
|
Line 174: | Line 337: |
* Stat on scouts / clusters / "matrix" * ANOVA: Use LENA functions |
* Stat on unconstrained sources? * Stat/time series: Hide lines going down to zero (Dimitrios: https://neuroimage.usc.edu/forums/t/common-source-activation-across-subjects-and-conditions/1152/21) * Cluster stat: Add frequency selection option * ANOVA: * Write panel similar to Process1 and Process2 |
Line 178: | Line 345: |
* Permutation tests: * t-test only (wilcoxon? sign-test?): paired, equal var, unequal var * nb permutations ~ 1000 * maximum statistic over "time" or "time and space" * Permutations / clustering: cf fieldtrip * http://fieldtrip.fcdonders.nl/tutorial/cluster_permutation_timelock * http://fieldtrip.fcdonders.nl/tutorial/cluster_permutation_freq * Threshold in time: keep only the regions that are significative for contiguous blocks of time, or over a certain number of time points<<BR>> => Process that creates a static representation of a temporal window |
* Multivariate stim-response analysis: https://github.com/mickcrosse/mTRF-Toolbox |
Line 188: | Line 349: |
* MRI: MINC format * EEG File formats: * EEG !CeeGraph * NEUROFILE = COHERENCE EEG/video !LongTerm Monitoring * EGI: Finish support for epoched files (formats 3,5,7) * !FieldTrip structures: In / Out * BCI2000 Input (via EEGLAB plugin) * !FreeSurfer: orig.mgz == Distribution & documentation == * Shortcuts: * Add Help buttons and menus (in popups, dialog windows...) => Links to the website. * List of all the keyboard and mouse shortcuts * Equivalents for MacOS * Introduction tutorials: * Estimate time to complete each tutorial * Clusters * Anatomy: Segmentation with !FreeSurfer * First steps: Brainstorm preferences * Headmodel: explain the fields + how to get the constrained leadfield * Coordinate sytems: How to convert between the different coordinates systems in scripts * Sources: Modelized data * Sources: theshold min. size (not documented yet) * Processes: Describe all the processes * Processes: How to write your own processes (user folder for processes) * Import raw recordings: Add "detect bad trials/channels" in the pipeline * Temporary folder * How to export sources for analysis in SPM * Advanced tutorials: * EEG (How to import an EEG cap) * Epilepsy / spike analysis * How to make and compress a movie (Brainstorm + !VirtualDub + XVid) * Ask users to send their channel files, align on Colin, distribute |
* BIDS import: * Add option to process to specify the protocol name * Full support for iEEG and EEG * Disable logging of sub-processes (reloading the previous report should only show process_import_bids) * Read real fiducials (OMEGA) / transformation matrices: * https://groups.google.com/g/bids-discussion/c/BeyUeuNGl7I * https://github.com/bids-standard/bids-specification/issues/752#issuecomment-795880992 * https://github.com/brainstorm-tools/brainstorm3/issues/139 * Use BIDS-Matlab? * Test datasets: * See list of test datasets in process_import_bids.m * ds004085 / ds004473: Check response epoch + BUG with coordinate interpretation * BIDS export: * EEG, iEEG: Add events.tsv, channel.tsv, electrodes.tsv * Anatomy: Add t1w.json (including fiducials) * Use BIDS-Matlab? * EDF+ reader: Add resampling of channels with different sampling rates * Support for OpenJData / JNIfTI: https://github.com/brainstorm-tools/brainstorm3/issues/284 * DICOM converter: * Add dcm2nii (MRICron) * Add MRIConvert * SPM .mat/.dat: Fix the import of the EEG/SEEG coordinates * EEG File formats:<<BR>> * XLTEK: https://github.com/danielmhanover/OpenXLT * Persyst .lay: https://github.com/ieeg-portal/Persyst-Reader * Nervus .eeg: https://github.com/ieeg-portal/Nervus-Reader * Biopac .acq: https://github.com/ieeg-portal/Biopac-Reader * BCI2000 Input (via EEGLAB plugin) * 4D file format: * Use reader from MNE-Python: mne.io.read_raw_kit (skip Yokogawa slow library) * Reference gradiometers: Keep the orientation of the first or second coil? * Reference gradiometers: Add the sensor definition from coil_def.dat * Validate with phantom recordings that noise compensation is properly taken into account * The noise compensation is considered to be always applied on the recordings, not sure this assumption is always correct * 4D phantom tutorial (JM Badier?) * BST-BIN: Add compression to .bst * MINC MRI: Add support for "voxel to world" transformation (vox2ras) similarly to .nii == Distribution == * Java-free Matlab: All references of functions below must be removed * '''JavaFrame''': screencapture.m (used for screen captures of videos) * '''Actxcontrol''': Used for video-EEG * uihtml + JavaScript callbacks? * ActiveX in .NET app? * Pure Java framce + VLC java plugin? * Other video player? * '''Javacomponent''': * mri_editMask * figure_mri * process_bandpass * List .jar files used from Matlab distribution (e.g. dom) => Check all the import calls * Cleanup GitHub repository: * https://github.com/brainstorm-tools/brainstorm3/issues/473 * Remove ICBM152 default anatomy from repo * Move external I/O libraries as plugins: * mne-matlab * CEDS64ML * edfimport * eeprobe * son * ricoh * yokogawa * easyh5 == Documentation == * All tutorial datasets in BIDS (including introduction tutorials) * Deface the MRIs of all the tutorials * Count GitHub clones in the the download stats * MNE-Python 1.0: Test and update install documentation * Tutorial OMEGA/BIDS: * Update the organization of derivatives folder (full FS folders) * Download example datasets directly from the OMEGA repository * New tutorials: <<BR>> * Other public datasets: [[https://github.com/INCF/BIDS-examples/tree/bep008_meg|https://github.com/INCF/BIDS-examples/tree/bep008_meg/]] * EEG/research * FieldTrip ECOG tutorial: http://www.fieldtriptoolbox.org/tutorial/human_ecog * Reproduce tutorials from MNE-Python: https://martinos.org/mne/stable/tutorials.html * Cam-CAN database: https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/<<BR>>(download new datasets, including maxfiltered files and manual fiducial placements) * MEG steady-state / high-gamma visual / frequency tagging * Reproduce results from "Simultaneous human intracerebral stimulation and HD-EEG, ground-truth for source localization methods": https://www.nature.com/articles/s41597-020-0467-x * Stand-alone ICA tutorial == Current bugs == * Image viewer: * Difficult to get to 100% * Buggy on some systems * 2DLayout: * (TF) Units are weird with % values * (TF) Difficult to navigate in frequencies: Scaling+changing frequency resets the scaling * Progress bar: * Doesn't close properly on some Linux systems * Focus requests change workspace when processing constantly (Linux systems) == Distributed computing == * Options from FieldTrip: * Loose collection of computers: https://github.com/fieldtrip/fieldtrip/tree/master/peer * Single multicore machine: https://github.com/fieldtrip/fieldtrip/tree/master/engine * Batch system: https://github.com/fieldtrip/fieldtrip/tree/master/qsub * Documentation: https://www.fieldtriptoolbox.org/faq/what_are_the_different_approaches_i_can_take_for_distributed_computing/ * PSOM: http://psom.simexp-lab.org/ * Google: https://www.youtube.com/watch?v=LLMXV3o2FT0 * https://edu.google.com/why-google/case-studies/unc-chapel-hill-gcp/ |
Line 223: | Line 487: |
* Cleaning surfaces: should work with atlases * Send OpenGL bug report to the Mathworks * Hide Java panels instead of deleting them * mri2scs: convert arguments to meters * Zip files created cannot be open with !WinZip * OpenGL options: {none, software, hardware} * Bug: Scout without overlay, adapt scale for each graph when "Uniform amplitude" option is unchecked (mixing sources + zscores) * Waitbars: * Replace old waitbars with java ones * Add a "Cancel" button on waitbars when the bounds are defined (ie. when bst controls the process) * Bug: Menu "Use default EEG cap" doesn't work for a multiple selection (setting the same EEG cap for several subjects) * Bug tree_dependencies: sources files, reprojected on default anatomy; If based on data files that are bad trials, they should be ignored by tree_dependencies, and they are not * bst_warp and channel_project: Use tess_parametrize_new instead of tess_parametrize * Bug in_bst_data_multi: If trials have different sizes, output is random (the one of the first file)... * Shared kernels: do the "get bad channels" operation in a different way (reading all the files is too slow) * Write shepards.m with new algorithm for nearest neighbors * Use Matlab Coder to compile / optimize some processes * Optimize calls to bst_get, now study and subject have necessarily the same folder name |
* Replace all calls to inpolyhd.m with inpolyhedron.m (10x faster) * Interface scaling: Rewrite class IconLoader to scale only once the icons at startup instead of at each request of an icon (might improve the speed of the rendering of the tree) * Processes with "radio" and "radio_line" options: Replace with "radio_label" and "radio_linelabel" * Interpolations: Use scatteredInterpolant, griddedInterpolant, triangulation.nearestNeighbor (2014b) |
What's next
A roadmap to the future developments of Brainstorm.
Contents
Recordings
- Review signals in time-frequency space
- Events processes: Select events names from a list instead of having to type them
- Display CTF coils: Show discs instead of squares
- Sleep scoring wish list (Emily C):
- Configurable horizontal lines (for helping detecting visually some thresholds)
- Mouse ruler: Measure amplitude by dragging the mouse.
- Automatic spindle detector
https://neuroimage.usc.edu/forums/t/page-overlap-while-reviewing-raw-file-a-way-to-set-to-0/11229/13
RAW file viewer speed (Low priority) :
- Consider to change to a format that is faster to read
- Add parameter to make the visual downsampling more or less aggressive
Keep the filter specifications in memory instead of recomputing for every page
(Nice to have)
BioSemi: Add menu "Convert naming system" to rename channels into 10-10 (A1=>FPz)
Simulations: https://github.com/lrkrol/SEREEGA(Low priority)
ECOG/SEEG
https://www.sciencedirect.com/science/article/pii/S1053811922005559
- Display (high-priority)(Part SEEG grant):
- Group display: Overlay multiple channel files in the same figure, coloring contacts by subject/ROI/Cluster/Electrode name
- iEEG tab must be read-only when multiple files (hide configuration controls)
Bad channels: Contacts greyed out instead of ignored (Marcel H, Germany)
(To diff between band and not-recorded) > Rendering of SEEG electrodes: Full surface modelling with surface mesh (see Lead-DBS models + code that generates them?)Display time in H:M:S instead of S > If there is t0 in H:M:S instead of S > As an option in Display configuration button>x-axis
- view_leadfield_sensitivity: Add closing surfaces at cortex limits
- Group display: Overlay multiple channel files in the same figure, coloring contacts by subject/ROI/Cluster/Electrode name
- Create clusters from anatomical labels (Anne So) :
Identify contacts in a given anatomical region (volume scout, surface mesh, or label in a volume atlas) / allow extracting the signals from all the contacts in an ROI> As a process to select recordings, then Scouts from Volumen Atlas, Create cluster in channel file, then Extract time series.
- Group analysis: extract clusters across subjects, display or average signals (see MIA) (Anne So)
- Spike detection (Need to check for current toolboxes from scratch)(contact Nicolas R)(Mosher J)(iEEG BIDS):
- Automatic segmentation of CT:
SEEG DEETO Arnulfo 2015: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0511-6
- Used routinely at Niguarda Hospital + other hospitals worldwide, reliable tool.
To be used with SEEG-assistant/3DSlicer: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1545-8
ECOG Centracchio 2021: https://link.springer.com/content/pdf/10.1007/s11548-021-02325-0.pdf
Classifier on thresholded CT: https://github.com/Jcentracchio/Automated-localization-of-ECoG-electrodes-in-CT-volumes
SEEG Granados 2018 (no code shared): https://link.springer.com/content/pdf/10.1007/s11548-018-1740-8.pdf
- ECOG:
- Project and display contacts on cortex surface should consider the rigidity of the grids: Contacts cannot rotate, and distance between contacts should remain constant across runs
Method for contacts projection: https://pdfs.semanticscholar.org/f10d/6b899d851f3c4b115404298d7b997cf1d5ab.pdf
ECOG: Brain shift: When creating contact positions on a post-implantation image, the brain shift should be taken into account for creating images of the ECOG contacts on the pre-op brain => iELVis (http://ielvis.pbworks.com/w/page/116347253/FrontPage)
Normalization MNI? solutions with FieldTrip?
Display CT images: Better brightness/contrast adjustment: https://neuroimage.usc.edu/forums/t/automatic-localization-of-seeg-electrodes/36302/8 Range of values is way diff than ones from MRI. Current color maps are not suitable for CT, need to be improved.Together with processing of CT to get electrode positions.
Detection CCEP stim artifacts: Use ImaGIN code ImaGIN_StimDetect https://f-tract.eu/software/imagin/
Pre-processing
- process_detectbad:
- Allow on raw files (for bad channels only)
- Add detection on derivative of the signal (see EEGLAB)
- Document in tutorial Bad channels
- PREP pipeline / EEGLAB (Bigdely-Shamlo 2015)
- Improve bad channel/trial detection:
- ft_artifact_threshold and ft_rejectartifact
- MNE-Python
- EEGLAB
- Integrate with EYE-EEG (Olaf Dimigen)
Reproduce tutorial: https://www.eyetracking-eeg.org/tutorial.html
- Create EYE-EEG plugin + processes (Raphael Lambert)
- Process: Detect sacades (extended events) + fixations
- Improved ICA
- Eye-movement related potentials
Add note when rejecting trials: https://neuroimage.usc.edu/forums/t/33686
ICA:
Automatic classification: ICLabel: https://neuroimage.usc.edu/forums/t/automatic-eeg-ic-ica-classification-for-brainstorm/33785
- Exploration: Add window with spectral decomposition (useful for muscle artifacts)
- Export IC time series (and then compute their spectrum): solves the problem above
- Import ICA matrices available in EEGLAB .set files
ICA+machine learning: https://www.ncbi.nlm.nih.gov/pubmed/28497769
Automated artifact rejection: https://arxiv.org/abs/1612.08194
Use EYE-EEG: EEGLAB toolbox for eye-tracker guided ICA (Olaf Dimigen): http://www2.hu-berlin.de/eyetracking-eeg/
- SSP:
Display warning if changing the ChannelFlag while there is a Projector applied
- File format:
- Add support to read GDF file format
https://github.com/donnchadh/biosig/blob/master/biosig/t200_FileAccess/sload.m
Reproducibility toolbox
- Generate fully reproducible scripts, including all the interactive/graphical parts
- Record all GUI actions as script calls
- Import window: Add button to create the corresponding processing pipeline (to generate script or to edit additional options)
- Adding the list of plugins to the reports (optionnal or foldable)
- Better provenance: History fields, uniform file names...
- Improving the pipeline editor to handle loops over data files or subjects
Interface
Add a warning when computing a forward model with > 100000 sources (check selection)
- Colormaps: Global colormap max: Should get the maximum across all the open files
- Snapshot:
- Save as image / all figures (similar to Movie/all figure)
- Copy figures to clipboard (with the screencapture function)
Contact sheets & movies: use average of time windows instead of single instants, for each picture.
- Contact sheets: Allow explicit list of times in input (+ display as in MNE-Python with TS)
Database
- Save iHeadModel somewhere in the datbase structure
Generalize the use of the units (field .DisplayUnits): Save in source files
Connectivity
- Thresholding and stat tests for connectivity matrices:
- Panel Display: Show only the top N% measures
- Connect NxN display:
- Graph on sensors: does not place the sensors correctly in space
- Display as image: Add legend of the elements along X and Y axis
- Display as time series: Display warning before trying to open too many signals
- Optimize display: use surface() instead of line() for links? (as in figure_3d/PlotFibers)
- Time-resolved correlation/coherence: Display as time bands
Processes
- Add MNE-Python functions:
- scikit-learn classifiers
- BEM single layer (John wants to test it)
ICA: https://neuroimage.usc.edu/forums/t/ica-on-very-long-eeg/23556/4
https://neuroimage.usc.edu/forums/t/best-way-to-export-to-mne-python/12704/3
- Reproduce other tutorials / examples
Point-spread functions (PSFs) and cross-talk functions: https://mne.tools/stable/auto_examples/inverse/plot_psf_ctf_vertices.html#sphx-glr-auto-examples-inverse-plot-psf-ctf-vertices-py
Spatial resolution metrics in source space:
https://mne.tools/stable/auto_examples/inverse/plot_resolution_metrics.html#sphx-glr-auto-examples-inverse-plot-resolution-metrics-py- Change the graphic renderer from Matlab
Chronux toolbox : http://chronux.org/
Add FieldTrip functions:
- ft_sourceanalysis:
- Check noise covariance
- Check all the options of all the methods
- Single trial reconstructions + noise covariance?
Filters?? http://www.fieldtriptoolbox.org/example/common_filters_in_beamforming
Beamformers: Save ftSource.avg.mom
http://www.fieldtriptoolbox.org/workshop/meg-uk-2015/fieldtrip-beamformer-demohttp://www.fieldtriptoolbox.org/tutorial/beamformingextended
- Baseline? Two inputs?
- ft_prepare_heamodel: Add support from BEM surfaces from the Brainstorm database
- Freqanalysis: ITC
ft_volumereslice: http://www.fieldtriptoolbox.org/faq/how_change_mri_orientation_size_fov
- ft_freqanalysis
- ft_combineplanar
- ft_sourceanalysis:
- Optimization:
Test speed for writing files:
https://undocumentedmatlab.com/articles/improving-fwrite-performance- Use CUDA for speeding up some operations (filtering, wavelets, etc)
- Use Matlab Coder to optimize: Wavelets, bandpass filter, sinusoid removal
- Pipeline editor:
- Bug: After "convert to continuous", the time of the following processes should change
- Add loops over subjects/conditions/trial groups
- Events: Allow selection from a drop-down list (similar to option "channelname" in panel_process_selection)
ITC: Inter-trial coherence (see MNE reports for group tutorial)
http://www.sciencedirect.com/science/article/pii/S1053811916304232Remove line noise: http://www.nitrc.org/projects/cleanline
- Time-frequency:
- Optimization: bst_timefreq (around l.136), remove evoked in source space: Average should be computed in sensor space instead of source space (requested by Dimitrios)
Short-time Fourier transform: http://www.mikexcohen.com/lectures.html
- Hilbert with time bands very slow on very long files (eg. 3600s at 1000Hz) because the time vector is still full (10^7 values): save compressed time vector instead.
- When normalizing with baseline: Propagate with the edge effects marked in TFmask
- Allow running TF on montages
- Review continuous files in time-frequency space (for epilepsy)
- Bug when computing TF on constrained and unconstrained scouts at the same time (in mixed head models for instance): uses only the constrained information and doesn't sum the 3 orientations for the unconstrained regions.
* requested feature from the forum: https://neuroimage.usc.edu/forums/t/event-export-and-process-find-maximum-value-amplitude/41911/2
- *
Anatomy
Import SimNIBS4: Use final_tissues_LUT.txt instead of fixed list of tissues: https://neuroimage.usc.edu/forums/t/removing-a-lesioned-area/38414/20
Simple-brain-plot: https://github.com/dutchconnectomelab/Simple-Brain-Plot
- MNI normalization: More options:
- DARTEL / SHOOT
BrainSuite (wait for Anand)
- Import from SimNIBS (Conform2MNI_nonl.nii.gz, MNI2Conform_nonl.nii.gz)
- MRI Viewer:
Adjust CT contrast better: https://neuroimage.usc.edu/forums/t/automatic-localization-of-seeg-electrodes/36302/10
- Pan in zoomed view (shift + click + move?)
- Zoom in/out with mouse (shift + scroll?)
- Ruler tool to measure distances
- Display scouts as additional volumes
Render surface envelope in the MRI as a thin line instead of the full interpolation matrix
Or use inpolyhedron to get a surface mask and then erode it to get the volume envelopeSurface>Volume interpolation: Use spm_mesh_to_grid instead of tess_tri_interp
- Defacing:
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/tutorials/refacer/refacer_run.html
- Removing MNI face mask using MNI coordinates
- Atlas switch in 3D MRI figures
Bug import anatomy: Requested nVert > high-resolution cortex surface: Creates an empty cortex_0V
BrainSuite:
- Use same colors for left and right for anatomical atlases
- Use for volume coregistration (rigid / non-rigid)
- USCBrain: Add default electrodes positions
Remove BrainSuite1 when not needed anymore
- Brain2mesh: Add import of 10-10 positions
- Templates for different ages:
MNI: https://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj1
Pediatric head atlases: https://www.pedeheadmod.net/pediatric-head-atlases-v1-2/
https://www.biorxiv.org/content/biorxiv/early/2020/02/09/2020.02.07.939447.full.pdf
John Richards: https://www.nitrc.org/frs/?group_id=1361
Neurodev database: https://jerlab.sc.edu/projects/neurodevelopmental-mri-database/
- Scouts:
- Display edges in the middle of the faces instead of the vertices
- Parcellating volume grids: scikit-learn.cluster.Ward
Geodesic distance calculations:
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching- Improving the registration between EEG and anatomy templates:
- Warping: Improve the basic alignment of the digitized electrodes on the templat, possibly with Cz and other anatomical landmarks
- EEG template positions: rework using a standardized Cz position (+ other landmarks)
Forward modeling
- DUNEuro/FEM:
Add lesion mask to SimNIBS: https://simnibs.github.io/simnibs/build/html/documentation/command_line/add_tissues_to_upsampled.html#add-tissues-to-upsampled-doc
GeomtryAdapted: Buggy?
Display differences between leadfields: amplitude of difference (right-click > Compare)
- Display sensitivity on FEM surface
- OpenMEEG: Detect bad results + exclude from leadfield
- BEM single sphere: Get implementation from MNE
- Add eyes models to attract eye activity
Source modeling
Reproduce results in "Simultaneous human intracerebral stimulation and HD-EEG, ground-truth for source localization methods": https://www.nature.com/articles/s41597-020-0467-x
- eLORETA instead of sLORETA?
https://neuroimage.usc.edu/forums/t/compute-eeg-sources-with-sloreta/13425/6
https://neuroimage.usc.edu/forums/t/loreta-and-source-localization/30525
"eLORETA algorithm is available in the MEG/EEG Toolbox of Hamburg (METH)": https://www.biorxiv.org/content/biorxiv/early/2019/10/17/809285.full.pdf
- Point-spread and cross-talk functions (code in MNE-Python):
- Dipoles:
- Display dipoles in MRI viewer
- panel_dipoles: Doesn't work with multiple figures
- Project sources: Very poor algorithm to project sub-cortical regions and cerebellum
- Maximum:
Menu Sources > Maximum value: Doesn't work with volume or mixed head models
- Panel Get coordinates: Add button "find maximum"
Sources on surface: Display peak regions over time (time = color) => A.Gramfort
- Volume grid:
- Optimize: 3D display (better than 9x9 cubes)
- Optimize: vol_dilate (with 26 neighbors)
Statistics
- Stat on unconstrained sources?
Stat/time series: Hide lines going down to zero (Dimitrios: https://neuroimage.usc.edu/forums/t/common-source-activation-across-subjects-and-conditions/1152/21)
- Cluster stat: Add frequency selection option
- ANOVA:
- Write panel similar to Process1 and Process2
- Output = 1 file per effect, all grouped in a node "ANOVA"
- Display several ANOVA maps (from several files) on one single figure, using a "graphic accumulator", towards which one can send any type of graphic object
Multivariate stim-response analysis: https://github.com/mickcrosse/mTRF-Toolbox
Input / output
- BIDS import:
- Add option to process to specify the protocol name
- Full support for iEEG and EEG
- Disable logging of sub-processes (reloading the previous report should only show process_import_bids)
- Read real fiducials (OMEGA) / transformation matrices:
- Use BIDS-Matlab?
- Test datasets:
- See list of test datasets in process_import_bids.m
- ds004085 / ds004473: Check response epoch + BUG with coordinate interpretation
- BIDS export:
- EEG, iEEG: Add events.tsv, channel.tsv, electrodes.tsv
- Anatomy: Add t1w.json (including fiducials)
- Use BIDS-Matlab?
- EDF+ reader: Add resampling of channels with different sampling rates
Support for OpenJData / JNIfTI: https://github.com/brainstorm-tools/brainstorm3/issues/284
- DICOM converter:
- Add dcm2nii (MRICron)
- Add MRIConvert
- SPM .mat/.dat: Fix the import of the EEG/SEEG coordinates
EEG File formats:
Persyst .lay: https://github.com/ieeg-portal/Persyst-Reader
Nervus .eeg: https://github.com/ieeg-portal/Nervus-Reader
Biopac .acq: https://github.com/ieeg-portal/Biopac-Reader
- BCI2000 Input (via EEGLAB plugin)
- 4D file format:
- Use reader from MNE-Python: mne.io.read_raw_kit (skip Yokogawa slow library)
- Reference gradiometers: Keep the orientation of the first or second coil?
- Reference gradiometers: Add the sensor definition from coil_def.dat
- Validate with phantom recordings that noise compensation is properly taken into account
- The noise compensation is considered to be always applied on the recordings, not sure this assumption is always correct
- 4D phantom tutorial (JM Badier?)
- BST-BIN: Add compression to .bst
- MINC MRI: Add support for "voxel to world" transformation (vox2ras) similarly to .nii
Distribution
- Java-free Matlab: All references of functions below must be removed
JavaFrame: screencapture.m (used for screen captures of videos)
Actxcontrol: Used for video-EEG
uihtml + JavaScript callbacks?
- ActiveX in .NET app?
- Pure Java framce + VLC java plugin?
- Other video player?
Javacomponent:
- mri_editMask
- figure_mri
- process_bandpass
List .jar files used from Matlab distribution (e.g. dom) => Check all the import calls
Cleanup GitHub repository:
- Remove ICBM152 default anatomy from repo
- Move external I/O libraries as plugins:
- mne-matlab
- CEDS64ML
- edfimport
- eeprobe
- son
- ricoh
- yokogawa
- easyh5
Documentation
- All tutorial datasets in BIDS (including introduction tutorials)
- Deface the MRIs of all the tutorials
Count GitHub clones in the the download stats
- MNE-Python 1.0: Test and update install documentation
- Tutorial OMEGA/BIDS:
- Update the organization of derivatives folder (full FS folders)
- Download example datasets directly from the OMEGA repository
New tutorials:
Other public datasets: https://github.com/INCF/BIDS-examples/tree/bep008_meg/
- EEG/research
FieldTrip ECOG tutorial: http://www.fieldtriptoolbox.org/tutorial/human_ecog
Reproduce tutorials from MNE-Python: https://martinos.org/mne/stable/tutorials.html
Cam-CAN database: https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/<<BR>>(download new datasets, including maxfiltered files and manual fiducial placements)
- MEG steady-state / high-gamma visual / frequency tagging
Reproduce results from "Simultaneous human intracerebral stimulation and HD-EEG, ground-truth for source localization methods": https://www.nature.com/articles/s41597-020-0467-x
- Stand-alone ICA tutorial
Current bugs
- Image viewer:
- Difficult to get to 100%
- Buggy on some systems
- 2DLayout:
- (TF) Units are weird with % values
- (TF) Difficult to navigate in frequencies: Scaling+changing frequency resets the scaling
- Progress bar:
- Doesn't close properly on some Linux systems
- Focus requests change workspace when processing constantly (Linux systems)
Distributed computing
Options from FieldTrip:
Loose collection of computers: https://github.com/fieldtrip/fieldtrip/tree/master/peer
Single multicore machine: https://github.com/fieldtrip/fieldtrip/tree/master/engine
Batch system: https://github.com/fieldtrip/fieldtrip/tree/master/qsub
Documentation: https://www.fieldtriptoolbox.org/faq/what_are_the_different_approaches_i_can_take_for_distributed_computing/
Geeky programming details
- Replace all calls to inpolyhd.m with inpolyhedron.m (10x faster)
Interface scaling: Rewrite class IconLoader to scale only once the icons at startup instead of at each request of an icon (might improve the speed of the rendering of the tree)
- Processes with "radio" and "radio_line" options: Replace with "radio_label" and "radio_linelabel"
- Interpolations: Use scatteredInterpolant, griddedInterpolant, triangulation.nearestNeighbor (2014b)