6681
Comment:
|
6894
|
Deletions are marked like this. | Additions are marked like this. |
Line 7: | Line 7: |
'''9:15 – Richard Leahy''' (University of Southern California):'''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/WelcomeCuttingEEGLAGarden__intro_leahy.pdf|Opening of the LA Garden]]''' | '''9:15 – Richard Leahy''' (University of Southern California): |
Line 9: | Line 9: |
'''9:30 – David Shattuck '''(University of California, Los Angeles): Introduction and Overview of Brainsuite | ''' [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/WelcomeCuttingEEGLAGarden__intro_leahy.pdf|Opening of the LA Garden]]''' '''9:30 – David Shattuck '''(University of California, Los Angeles): Introduction and Overview of Brainsuite |
Line 13: | Line 17: |
'''10:30 – Anand Joshi''' (University of Southern California): [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/BrainSuiteToolsGardens_joshi.pdf|Brainsuite Tools & Discussion]] | '''10:30 – Anand Joshi''' (University of Southern California): |
Line 15: | Line 19: |
'''11:00 – Richard Leahy''' (University of Southern California): [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/BrainstormEEGOverviewCuttingGardens2023_leahy.pdf|Introduction to EEG/MEG Analysis]] | [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/BrainSuiteToolsGardens_joshi.pdf|Brainsuite Tools & Discussion]] |
Line 17: | Line 21: |
'''11:45 –''' '''Cameron Sacks''' (Wearable Sensing): EEG Live Demo & Discussion | '''11:00 – Richard Leahy''' (University of Southern California): [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/BrainstormEEGOverviewCuttingGardens2023_leahy.pdf|Introduction to EEG/MEG Analysis]] '''11:45 –''' '''Cameron Sacks''' (Wearable Sensing): EEG Live Demo & Discussion |
Line 83: | Line 93: |
. '''9:00–9:25- Arnaud Delorme '''(University of California, San Diego): “''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/BIDS_ml_usc_delorme.pdf|Machine learning and the BIDS EEG data format]]”'' | . '''9:00–9:25- Arnaud Delorme '''(University of California, San Diego): “''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/BIDS_ml_usc_delorme.pdf|Machine learning and the BIDS EEG data format]]”'' |
Line 85: | Line 96: |
Line 105: | Line 118: |
. [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/USCsymposium_Alex_Silva.pdf|“A high performance neuroprosthesis for speech decoding and avatar control]]''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/USCsymposium_Alex_Silva.pdf|“]] . '''13:30–14:00''– ''Maryam Shanechi '''(University of Southern California)'':'' . ''''' '''“AI-powered next-generation neurotechnologies”'' '' '' . '''14:00–14:30''– ''Ludovic Bellier '''(University of California, Berkeley) '': '' . ''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/CuttingEEG20231029_LBellier.pdf|“Reconstructing Pink Floyd from human auditory cortex”]]'' '' '' |
. [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/USCsymposium_Alex_Silva.pdf|“A high performance neuroprosthesis for speech decoding and avatar control]]''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/USCsymposium_Alex_Silva.pdf|“]] '' . '''''13:30–14:00''''''''– ''Maryam Shanechi '''''''(University of Southern California)'':'' '' . ''' '''“AI-powered next-generation neurotechnologies”'' '' '' '' . '''''14:00–14:30''''''''– ''Ludovic Bellier '''''''(University of California, Berkeley) '': '' '' . [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/CuttingEEG20231029_LBellier.pdf|“Reconstructing Pink Floyd from human auditory cortex”]]'' '' '' '' |
Line 111: | Line 124: |
Panel Discussion''' '' '' ''' | ''Panel Discussion''' '''''''' '' ''''''' '' |
Line 113: | Line 126: |
. '''14:40–15:10'''''–''' '''Moderator: '''''Shrikanth Narayanan and Kristina Lerman''' (University of Southern California)'':'' . '' “The Role of Foundational Models in Spontaneous and Event-Related EEG“'' '' '' |
. '''''14:40–15:10'''''–''' '''Moderator: '''''Shrikanth Narayanan and Kristina Lerman''' (University of Southern California)'':'' '' . “The Role of Foundational Models in Spontaneous and Event-Related EEG“'' '' '' '' |
Line 116: | Line 129: |
Coffee Break(15:10–15:40)''' '' '' ''' | ''Coffee Break(15:10–15:40)''' '''''''' '' ''''''' '' |
Line 118: | Line 131: |
'''Session 4: Machine Learning for neurological disorders; session chair: Kristina Lerman '' '' ''' | '''''Session 4: Machine Learning for neurological disorders; session chair: Kristina Lerman '''''''' '' ''''''' '' |
Line 120: | Line 133: |
. '''15:40–16:05''– ''Srikantan Nagarajan '''(University of California, San Francisco)'':'' . '' [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/USCTalk_Oct2023_v3_Sri.pdf|“Machine learning algorithms for electromagnetic brain imaging in dementia”]]'' '' '' . '''16:05–16:30''– ''Dimitrios Pantazis''' (Massachusetts Institute of Technology)'':'' . '' [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/CuttingEEG_GardenLA2023_Pantazis.pdf|“Graph representation learning of MEG signals opens a window to aging trajectories and Alzheimer’s disease”]] '' ''' ''' |
. '''''15:40–16:05''''''''– ''Srikantan Nagarajan '''''''(University of California, San Francisco)'':'' '' . [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/USCTalk_Oct2023_v3_Sri.pdf|“Machine learning algorithms for electromagnetic brain imaging in dementia”]]'' '' '' '' . '''''16:05–16:30''''''''– ''Dimitrios Pantazis''''''' (Massachusetts Institute of Technology)'':'' '' . [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/CuttingEEG_GardenLA2023_Pantazis.pdf|“Graph representation learning of MEG signals opens a window to aging trajectories and Alzheimer’s disease”]] '' ''' ''' '' |
Line 125: | Line 138: |
. '' '' ''' ''' . '''16:30–16:55''– ''Jason da Silva Castanheira (McGill University)'':''''' . [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/Cutting_Gardens_daSilvaCastanheira_short.pdf|“Inter-individual differences in neurophysiology vary with age and disease”]] |
. '' ''' ''' '' . '''''16:30–16:55''''''''– ''Jason da Silva Castanheira (McGill University)'':''''' '' . ''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/Cutting_Gardens_daSilvaCastanheira_short.pdf|“Inter-individual differences in neurophysiology vary with age and disease”]] '' |
Line 129: | Line 142: |
'''Closing and final remarks''' '' '' ''' ''' | '''''Closing and final remarks''' '' '' ''' ''' '' |
CuttingGarden2023: LA Garden Program
WEDNESDAY 18th
5:30 – [Global] Reproductible processing pipelines and multiverses
8:30 – Registration & Continental Breakfast
9:15 – Richard Leahy (University of Southern California):
9:30 – David Shattuck (University of California, Los Angeles):
- Introduction and Overview of Brainsuite
10:15 Coffee Break
10:30 – Anand Joshi (University of Southern California):
11:00 – Richard Leahy (University of Southern California):
11:45 – Cameron Sacks (Wearable Sensing):
EEG Live Demo & Discussion
12:00 – Lunch Break
12:30–17:30 – Tutorial – Hands-On Brainstorm
Raymundo Cassani (McGill University) & Takfarinas Medani (University of Southern California)
12:30–13:00 Onsite assistance in installing the material for the training session
13:00–13:30 Introduction to Brainstorm (lecture)
13:30–14:35 Loading anatomy and recordings
- Set anatomy
- Review Raw recordings
- Import events
14:35–15:35 Pre-processing
- Frequency filters
- Artefact detections
- Artifact correction with SSP
15:30–15:45 Coffee Break
15:45–16:20 Analysis sensor level
Import recording
Review trials
Trial averages
16:20–16:55 Source estimation
Forward Model (aka Head model)
Noise covariance matrix
Source estimation (from EEG and MEG recording)
16:55–17:15 Analysis source level
Cortex parcellations: Atlases and scouts
Noise covariance matrix
Source estimation (from EEG and MEG recording)
THURSDAY 19th
5:30 – [Global] Deep Neural Network (DNN) analysis for MEEG data
8:30 – Continental Breakfast
9:00 – 17:30 – [Local] Machine Learning and EEG
Session 1: Computational Tools and Pipelines for ML analysis; session chair: Richard Leahy.
9:00–9:25- Arnaud Delorme (University of California, San Diego): “Machine learning and the BIDS EEG data format”
9:25–9:50- Tim Mullen (Intheon Labs):
“Creating Deployable Workflows for EEG Signal Processing and ML/DL Using NeuroPype”
9:50–10:15– Ivan Tashev (Microsoft Research):
“Workload estimation using brain- and bio- signals for adaptive training system”
10:15–10:40– Bin He (Carnegie Mellon University):
“AI/ML Enhances Dynamic Brain Imaging from EEG/MEG”
Coffee Break (10:40–11:00)
Session 2: Self Supervised Leaning; session chair: Takfarinas Medani
11:00–11:25– Dominique Duncan (University of Southern California):
“Unsupervised Multivariate Time-Series Transformers for Seizure Identification on EEG”
11:25–11:50– Wenhui Cui (University of Southern California):
“Neuro-GPT: A Foundation Model Pretrained on Large-Scale EEG Data”
Lunch Break (12:00–13:00)
Session 3: Machine Learning for brain computer interfaces; session chair: Shrikanth Narayanan
13:00–13:30- Alexander Silva (University of California, San Francisco):
“A high performance neuroprosthesis for speech decoding and avatar control“
13:30–14:00– Maryam Shanechi '(University of Southern California):
“AI-powered next-generation neurotechnologies”
14:00–14:30– Ludovic Bellier '(University of California, Berkeley) :
Panel Discussion '
14:40–15:10– Moderator: Shrikanth Narayanan and Kristina Lerman (University of Southern California):
“The Role of Foundational Models in Spontaneous and Event-Related EEG“
Coffee Break(15:10–15:40) '
Session 4: Machine Learning for neurological disorders; session chair: Kristina Lerman '
15:40–16:05– Srikantan Nagarajan '(University of California, San Francisco):
“Machine learning algorithms for electromagnetic brain imaging in dementia”
16:05–16:30– Dimitrios Pantazis' (Massachusetts Institute of Technology):
16:30–16:55– Jason da Silva Castanheira (McGill University):
“Inter-individual differences in neurophysiology vary with age and disease”
Closing and final remarks