6894
Comment:
|
6887
|
Deletions are marked like this. | Additions are marked like this. |
Line 13: | Line 13: |
Introduction and Overview of Brainsuite | . Introduction and Overview of Brainsuite |
Line 19: | Line 19: |
[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/BrainSuiteToolsGardens_joshi.pdf|Brainsuite Tools & Discussion]] | . [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/BrainSuiteToolsGardens_joshi.pdf|Brainsuite Tools & Discussion]] |
Line 23: | Line 23: |
[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/BrainstormEEGOverviewCuttingGardens2023_leahy.pdf|Introduction to EEG/MEG Analysis]] | . [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/BrainstormEEGOverviewCuttingGardens2023_leahy.pdf|Introduction to EEG/MEG Analysis]] |
Line 27: | Line 27: |
EEG Live Demo & Discussion | . EEG Live Demo & Discussion |
Line 93: | Line 93: |
. '''9:00–9:25- Arnaud Delorme '''(University of California, San Diego): “''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/BIDS_ml_usc_delorme.pdf|Machine learning and the BIDS EEG data format]]”'' |
. '''9:00–9:25- Arnaud Delorme '''(University of California, San Diego): “''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/BIDS_ml_usc_delorme.pdf|Machine learning and the BIDS EEG data format]]”'' |
Line 96: | Line 95: |
Line 119: | Line 117: |
. '''''13:30–14:00''''''''– ''Maryam Shanechi '''''''(University of Southern California)'':'' '' . ''' '''“AI-powered next-generation neurotechnologies”'' '' '' '' . '''''14:00–14:30''''''''– ''Ludovic Bellier '''''''(University of California, Berkeley) '': '' '' |
. '''''13:30–14:00''''''''– ''Maryam Shanechi '''''''''''(University of Southern California)'''''''':'' '' ''' . '''“AI-powered next-generation neurotechnologies”'' '' '' '' ''' . ''14:00–14:30''– ''Ludovic Bellier '(University of California, Berkeley) '': '' '' |
Line 124: | Line 122: |
''Panel Discussion''' '''''''' '' ''''''' '' | ''Panel Discussion'' |
Line 126: | Line 124: |
. '''''14:40–15:10'''''–''' '''Moderator: '''''Shrikanth Narayanan and Kristina Lerman''' (University of Southern California)'':'' '' . “The Role of Foundational Models in Spontaneous and Event-Related EEG“'' '' '' '' |
. '''''14:40–15:10''''''''–''' '''Moderator: '''''Shrikanth Narayanan and Kristina Lerman''' (University of Southern California)'''''''':'' '' ''' . '''“The Role of Foundational Models in Spontaneous and Event-Related EEG“'' '' '' '' ''' |
Line 129: | Line 127: |
''Coffee Break(15:10–15:40)''' '''''''' '' ''''''' '' | '''''Coffee Break(15:10–15:40)''''''' '' '' ' '' |
Line 131: | Line 129: |
'''''Session 4: Machine Learning for neurological disorders; session chair: Kristina Lerman '''''''' '' ''''''' '' | '''''Session 4: Machine Learning for neurological disorders; session chair: Kristina Lerman''''' |
Line 133: | Line 131: |
. '''''15:40–16:05''''''''– ''Srikantan Nagarajan '''''''(University of California, San Francisco)'':'' '' | . ''15:40–16:05''– ''Srikantan Nagarajan '(University of California, San Francisco)'':'' '' |
Line 135: | Line 133: |
. '''''16:05–16:30''''''''– ''Dimitrios Pantazis''''''' (Massachusetts Institute of Technology)'':'' '' . [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/CuttingEEG_GardenLA2023_Pantazis.pdf|“Graph representation learning of MEG signals opens a window to aging trajectories and Alzheimer’s disease”]] '' ''' ''' '' |
. '''''16:05–16:30''''''''– ''Dimitrios Pantazis''''''''''' (Massachusetts Institute of Technology)'''''''':'' '' ''' . '''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/CuttingEEG_GardenLA2023_Pantazis.pdf|“Graph representation learning of MEG signals opens a window to aging trajectories and Alzheimer’s disease”]] '' ''''''' ''' '''''''' ''' |
Line 138: | Line 136: |
. '' ''' ''' '' . '''''16:30–16:55''''''''– ''Jason da Silva Castanheira (McGill University)'':''''' '' . ''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/Cutting_Gardens_daSilvaCastanheira_short.pdf|“Inter-individual differences in neurophysiology vary with age and disease”]] '' |
. ''''' ''''''' ''' '''''''' ''' . ''16:30–16:55''– ''Jason da Silva Castanheira (McGill University)'':''''' '' ''' . '''''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/Cutting_Gardens_daSilvaCastanheira_short.pdf|“Inter-individual differences in neurophysiology vary with age and disease”]] '' ''' |
Line 142: | Line 140: |
'''''Closing and final remarks''' '' '' ''' ''' '' | '''''Closing and final remarks'''''''' '''''' '' ''''''' ''' '''''''' ''' |
CuttingGarden2023: LA Garden Program
WEDNESDAY 18th
5:30 – [Global] Reproductible processing pipelines and multiverses
8:30 – Registration & Continental Breakfast
9:15 – Richard Leahy (University of Southern California):
9:30 – David Shattuck (University of California, Los Angeles):
- Introduction and Overview of Brainsuite
10:15 Coffee Break
10:30 – Anand Joshi (University of Southern California):
11:00 – Richard Leahy (University of Southern California):
11:45 – Cameron Sacks (Wearable Sensing):
EEG Live Demo & Discussion
12:00 – Lunch Break
12:30–17:30 – Tutorial – Hands-On Brainstorm
Raymundo Cassani (McGill University) & Takfarinas Medani (University of Southern California)
12:30–13:00 Onsite assistance in installing the material for the training session
13:00–13:30 Introduction to Brainstorm (lecture)
13:30–14:35 Loading anatomy and recordings
- Set anatomy
- Review Raw recordings
- Import events
14:35–15:35 Pre-processing
- Frequency filters
- Artefact detections
- Artifact correction with SSP
15:30–15:45 Coffee Break
15:45–16:20 Analysis sensor level
Import recording
Review trials
Trial averages
16:20–16:55 Source estimation
Forward Model (aka Head model)
Noise covariance matrix
Source estimation (from EEG and MEG recording)
16:55–17:15 Analysis source level
Cortex parcellations: Atlases and scouts
Noise covariance matrix
Source estimation (from EEG and MEG recording)
THURSDAY 19th
5:30 – [Global] Deep Neural Network (DNN) analysis for MEEG data
8:30 – Continental Breakfast
9:00 – 17:30 – [Local] Machine Learning and EEG
Session 1: Computational Tools and Pipelines for ML analysis; session chair: Richard Leahy.
9:00–9:25- Arnaud Delorme (University of California, San Diego): “Machine learning and the BIDS EEG data format”
9:25–9:50- Tim Mullen (Intheon Labs):
“Creating Deployable Workflows for EEG Signal Processing and ML/DL Using NeuroPype”
9:50–10:15– Ivan Tashev (Microsoft Research):
“Workload estimation using brain- and bio- signals for adaptive training system”
10:15–10:40– Bin He (Carnegie Mellon University):
“AI/ML Enhances Dynamic Brain Imaging from EEG/MEG”
Coffee Break (10:40–11:00)
Session 2: Self Supervised Leaning; session chair: Takfarinas Medani
11:00–11:25– Dominique Duncan (University of Southern California):
“Unsupervised Multivariate Time-Series Transformers for Seizure Identification on EEG”
11:25–11:50– Wenhui Cui (University of Southern California):
“Neuro-GPT: A Foundation Model Pretrained on Large-Scale EEG Data”
Lunch Break (12:00–13:00)
Session 3: Machine Learning for brain computer interfaces; session chair: Shrikanth Narayanan
13:00–13:30- Alexander Silva (University of California, San Francisco):
“A high performance neuroprosthesis for speech decoding and avatar control“
13:30–14:00– Maryam Shanechi (University of Southern California):
“AI-powered next-generation neurotechnologies”
14:00–14:30– Ludovic Bellier '(University of California, Berkeley) :
Panel Discussion
14:40–15:10– Moderator: Shrikanth Narayanan and Kristina Lerman (University of Southern California):
15:40–16:05– Srikantan Nagarajan '(University of California, San Francisco):
“Machine learning algorithms for electromagnetic brain imaging in dementia”
16:05–16:30– Dimitrios Pantazis (Massachusetts Institute of Technology):
'
16:30–16:55– Jason da Silva Castanheira (McGill University):
“Inter-individual differences in neurophysiology vary with age and disease”
Closing and final remarks '