5391
Comment:
|
7137
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
===== WEDNESDAY 18th ===== . 5:30 – [''Global''] Reproductible processing pipelines and multiverses 8:30 – '''Registration & Continental Breakfast ''' 9:15 – Richard Leahy (University of Southern California): Opening of the LA Garden 9:30 – David Shattuck (University of California, Los Angeles): Introduction and Overview of Brainsuite |
= CuttingGarden2023: Los Angeles Garden = <<HTML(<img align="right" alt="cutting_lax_logo.png" class="attachment" src="/brainstorm/WorkshopLA2023?action=AttachFile&do=get&target=cutting_lax_logo.png" title="cutting_lax_logo.png" style="width: 35%;">)>> |
Line 5: | Line 4: |
10:15 ''Coffee Break'' | |
Line 7: | Line 5: |
10:30 – Anand Joshi (University of Southern California): Brainsuite Demo & Discussion | |
Line 9: | Line 6: |
11:00 – Richard Leahy (University of Southern California): Introduction to EEG/MEG Analysis | |
Line 11: | Line 7: |
11:45 – Cameron Sacks (Wearable Sensing): EEG Live Demo & Discussion | |
Line 13: | Line 8: |
12:00 – ''Lunch Break'' | == WEDNESDAY 18th == '''5:30 –''' [''Global''] Reproductible processing pipelines and multiverses |
Line 15: | Line 11: |
12:30–17:30 – [[https://neuroimage.usc.edu/brainstorm/WorkshopLA2023|Tutorial – Hands-On Brainstorm]] | '''8:30 – '''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/Local-Program_LA.pdf|Registration & Continental Breakfast]] |
Line 17: | Line 13: |
. Raymundo Cassani (McGill University) Takfarinas Medani (University of Southern California) ''12:30–13:00 '' Onsite assistance in installing the material for the training session |
'''9:15 – Richard Leahy''' (University of Southern California): |
Line 20: | Line 15: |
'' 13:00–13:30 ''Introduction to Brainstorm (lecture) | ''' [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/WelcomeCuttingEEGLAGarden__intro_leahy.pdf|Opening of the LA Garden]]''' |
Line 22: | Line 17: |
'' 13:30–14:35 ''Loading anatomy and recordings | '''9:30 – David Shattuck '''(University of California, Los Angeles): |
Line 24: | Line 19: |
'' Set anatomy '' | . Introduction and Overview of Brainsuite |
Line 26: | Line 21: |
'' Review Raw recordings'' | '''10:15''' ''Coffee Break'' |
Line 28: | Line 23: |
'' Import events'' | '''10:30 – Anand Joshi''' (University of Southern California): |
Line 30: | Line 25: |
'' 14:35–15:35 ''Pre-processing | . [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/BrainSuiteToolsGardens_joshi.pdf|Brainsuite Tools & Discussion]] |
Line 32: | Line 27: |
'' Frequency filters '' | '''11:00 – Richard Leahy''' (University of Southern California): |
Line 34: | Line 29: |
'' Artefact detections'' | . [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/BrainstormEEGOverviewCuttingGardens2023_leahy.pdf|Introduction to EEG/MEG Analysis]] |
Line 36: | Line 31: |
'' Artifact correction with SSP'' | '''11:45 –''' '''Cameron Sacks''' (Wearable Sensing): |
Line 38: | Line 33: |
'' 15:30–15:45 Coffee Break'' | . [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/wearableSensig_Cameron_compressed.pdf|EEG Live Demo & Discussion]] |
Line 40: | Line 35: |
'' 15:45–16:20 Analysis sensor level'' | '''12:00 – ''Lunch Break'' ''' |
Line 42: | Line 37: |
'' Import recording'''' <<BR>>'''''''' ''' | '''12:30–17:30 ''' – [[https://neuroimage.usc.edu/brainstorm/WorkshopLA2023|Tutorial – Hands-On Brainstorm]] |
Line 44: | Line 39: |
''''' Review trials'' ''' | . '''Raymundo Cassani '''(McGill University) &''' Takfarinas Medani '''(University of Southern California) . |
Line 46: | Line 42: |
''''' Trial averages'' ''' | '''12:30–13:00''' Onsite assistance in installing the material for the training session |
Line 48: | Line 44: |
''''' 16:20–16:55 Source estimation'' ''' | '''13:00–13:30 '''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/2023_lax_tm_bst.pdf|Introduction to Brainstorm (lecture)]] - [[https://www.youtube.com/watch?v=_h-X6GfxmpE|Youtube Video]] - |
Line 50: | Line 46: |
''''' Forward Model (aka Head model)'''''''''' ''''' | '''13:30–14:35 Loading anatomy and recordings ''' |
Line 52: | Line 48: |
''' Noise covariance matrix'' ''''' | . Set anatomy |
Line 54: | Line 50: |
''' Source estimation (from EEG and MEG recording)'' ''''' | . Review Raw recordings |
Line 56: | Line 52: |
''' 16:55–17:15 Analysis source level'' ''''' | . Import events |
Line 58: | Line 54: |
''' Cortex parcellations: Atlases and scouts'''''' ''' | '''14:35–15:35 Pre-processing ''' |
Line 60: | Line 56: |
''''' Noise covariance matrix'' ''' | . Frequency filters |
Line 62: | Line 58: |
''''' Source estimation (from EEG and MEG recording)'''''''' '' | . Artefact detections . Artifact correction with SSP '''15:30–15:45 Coffee Break ''' '''15:45–16:20 Analysis sensor level ''' . Import recording'' '' . ''Review trials '' . ''Trial averages '' '''''16:20–16:55 Source estimation ''' '' . ''Forward Model (aka Head model) '' . ''Noise covariance matrix '' . ''Source estimation (from EEG and MEG recording) '' '''''16:55–17:15 Analysis source level ''' '' . ''Cortex parcellations: Atlases and scouts '' . ''Noise covariance matrix '' . ''Source estimation (from EEG and MEG recording) '' |
Line 65: | Line 89: |
'' '' | '' '' |
Line 67: | Line 91: |
5:30 – [''Global''] Deep Neural Network (DNN) analysis for MEEG data | '''5:30 –''' [''Global''] Deep Neural Network (DNN) analysis for MEEG data '' '' |
Line 69: | Line 93: |
8:30 – ''' Continental Breakfast''' | '''8:30 –''' ''' Continental Breakfast''' '' '' |
Line 71: | Line 95: |
9:00 – 17:30 – [''Local''] Machine Learning and EEG | '''9:00 – 17:30 –''' [''Local''] Machine Learning and EEG '' '' |
Line 73: | Line 97: |
. Session 1: Computational Tools and Pipelines for ML analysis; session chair: Richard Leahy . 9:00–9:25- Arnaud Delorme (University of California, San Diego): “''Machine learning and the BIDS EEG data format”'' 9:25–9:50- Tim Mullen (Intheon Labs):'' “Creating Deployable Workflows for EEG Signal Processing and ML/DL Using NeuroPype”'' 9:50–10:15''– ''Ivan Tashev (Microsoft Research)'': “Workload estimation using brain- and bio- signals for adaptive training system”'' 10:15–10:40''– ''Bin He (Carnegie Mellon University)'': “AI/ML Enhances Dynamic Brain Imaging from EEG/MEG”'' '''Coffee ''''''Break (10:40–11:00)''' Session 2: Self Supervised Leaning; session chair: Takfarinas Medani . 11:00–11:25''– ''Dominique Duncan (University of Southern California)'': “Unsupervised Multivariate Time-Series Transformers for Seizure Identification on EEG”'' 11:25–11:50''– ''Wenhui Cui (University of Southern California)'': “Neuro-GPT: A Foundation Model Pretrained on Large-Scale EEG Data”'' |
'''Session 1: Computational Tools and Pipelines for ML analysis; session chair: Richard Leahy.'' '' ''' |
Line 83: | Line 99: |
''' Lunch ''''''Break (12:00–13:00)''' | . '''9:00–9:25- Arnaud Delorme '''(University of California, San Diego): “''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/BIDS_ml_usc_delorme.pdf|Machine learning and the BIDS EEG data format]]”'' . '''9:25–9:50- Tim Mullen''' (Intheon Labs):'' '' |
Line 85: | Line 102: |
''' Session 3: Machine Learning for brain computer interfaces; session chair: Shrikanth Narayanan''' | . ''“Creating Deployable Workflows for EEG Signal Processing and ML/DL Using NeuroPype”'' '' '' . '''9:50–10:15''– ''Ivan Tashev''' (Microsoft Research)'':'' . '' [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/2023_Garden_WorkloadEstimation_IvanTashev_final.pdf|“Workload estimation using brain- and bio- signals for adaptive training system”]]'' '' '' . '''10:15–10:40''– ''Bin He''' (Carnegie Mellon University)'':'' . '' “AI/ML Enhances Dynamic Brain Imaging from EEG/MEG”'' . . '''Coffee '''''' Break (10:40–11:00)''' '' '' |
Line 87: | Line 110: |
. 13:00–13:30- Alexander Silva (University of California, San Francisco): “A high performance neuroprosthesis for speech decoding and avatar control''“'' 13:30–14:00''– ''Maryam Shanechi (University of Southern California)'': “AI-powered next-generation neurotechnologies”'' 14:00–14:30''– ''Ludovic Bellier (University of California, Berkeley) '': “Reconstructing Pink Floyd from human auditory cortex”'' |
'''Session 2: Self Supervised Leaning; session chair: Takfarinas Medani '' '' ''' |
Line 91: | Line 112: |
''' Panel Discussion''' | . '''11:00–11:25''– ''Dominique Duncan''' (University of Southern California)'':'' . '' [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/Cutting_EEG_2023_Duncan.pdf|“Unsupervised Multivariate Time-Series Transformers for Seizure Identification on EEG”]]'' '' '' . '''11:25–11:50''– ''Wenhui Cui '''(University of Southern California)'':'' . '' [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/eeg_foundation_model_talk_Cui.pdf|“Neuro-GPT: A Foundation Model Pretrained on Large-Scale EEG Data”]]'' |
Line 93: | Line 117: |
. 14:40–15:10''– Moderator: ''Shrikanth Narayanan and Kristina Lerman (University of Southern California)'': “The Role of Foundational Models in Spontaneous and Event Related EEG“'' | Lunch Break (12:00–13:00)''' '' '' ''' |
Line 95: | Line 119: |
''' Coffee ''''''Break(15:10–15:40)''' | '''Session 3: Machine Learning for brain computer interfaces; session chair: Shrikanth Narayanan '' '' ''' |
Line 97: | Line 121: |
''' Session 4: Machine Learning for neurological disorders; session chair: Kristina Lerman''' | . '''13:00–13:30- Alexander Silva '''(University of California, San Francisco): . [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/USCsymposium_Alex_Silva.pdf|“A high performance neuroprosthesis for speech decoding and avatar control]]''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/USCsymposium_Alex_Silva.pdf|“]] '' . '''''13:30–14:00''''''''– ''Maryam Shanechi '''''(University of Southern California)'':'' '' ''' ''''' . ''“AI-powered next-generation neurotechnologies”'' '' '' '' ''' ''''' . '''14:00–14:30''– ''Ludovic Bellier '(University of California, Berkeley) '': '' '' ''''' . [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/CuttingEEG20231029_LBellier.pdf|“Reconstructing Pink Floyd from human auditory cortex”]] |
Line 99: | Line 128: |
. 15:40–16:05''– ''Srikantan Nagarajan (University of California, San Francisco)'': “Machine learning algorithms for electromagnetic brain imaging in dementia”'' 16:05–16:30''– ''Dimitrios Pantazis (Massachusetts Institute of Technology)'': “Graph representation learning of MEG signals opens a window to aging trajectories and Alzheimer’s disease”'' 16:30–16:55''– ''Jason da Silva Castanheira (McGill University)'': “Inter-individual differences in neurophysiology vary with age and disease”'' |
'''Panel Discussion'' ''''' |
Line 103: | Line 130: |
''' Closing and final remarks''' | . '''14:40–15:10''– Moderator: ''Shrikanth Narayanan and Kristina Lerman''' (University of Southern California)'':'' '' ''' ''''' . ''“The Role of Foundational Models in Spontaneous and Event-Related EEG“'' '' '' '' ''' ''''' Coffee Break(15:10–15:40) '''Session 4: Machine Learning for neurological disorders; session chair: Kristina Lerman''''' '' . 15:40–16:05''– ''Srikantan Nagarajan '(University of California, San Francisco)'':'' '' '' . ''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/USCTalk_Oct2023_v3_Sri.pdf|“Machine learning algorithms for electromagnetic brain imaging in dementia”]]'' '' '' '' '' . '''16:05–16:30''''''''– ''Dimitrios Pantazis''''' (Massachusetts Institute of Technology)'':'' '' ''' ''' . [[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/CuttingEEG_GardenLA2023_Pantazis.pdf|“Graph representation learning of MEG signals opens a window to aging trajectories and Alzheimer’s disease”]] . '''''16:30–16:55''– ''Jason da Silva Castanheira (McGill University)'':''''' '' ''' ''' . ''[[https://neuroimage.usc.edu/resources/CuttingEEG2023finalSlides/Cutting_Gardens_daSilvaCastanheira_short.pdf|“Inter-individual differences in neurophysiology vary with age and disease”]] '' ''' ''' '''Closing and final remarks''' |
CuttingGarden2023: Los Angeles Garden
WEDNESDAY 18th
5:30 – [Global] Reproductible processing pipelines and multiverses
8:30 – Registration & Continental Breakfast
9:15 – Richard Leahy (University of Southern California):
9:30 – David Shattuck (University of California, Los Angeles):
- Introduction and Overview of Brainsuite
10:15 Coffee Break
10:30 – Anand Joshi (University of Southern California):
11:00 – Richard Leahy (University of Southern California):
11:45 – Cameron Sacks (Wearable Sensing):
12:00 – Lunch Break
12:30–17:30 – Tutorial – Hands-On Brainstorm
Raymundo Cassani (McGill University) & Takfarinas Medani (University of Southern California)
12:30–13:00 Onsite assistance in installing the material for the training session
13:00–13:30 Introduction to Brainstorm (lecture) - Youtube Video -
13:30–14:35 Loading anatomy and recordings
- Set anatomy
- Review Raw recordings
- Import events
14:35–15:35 Pre-processing
- Frequency filters
- Artefact detections
- Artifact correction with SSP
15:30–15:45 Coffee Break
15:45–16:20 Analysis sensor level
Import recording
Review trials
Trial averages
16:20–16:55 Source estimation
Forward Model (aka Head model)
Noise covariance matrix
Source estimation (from EEG and MEG recording)
16:55–17:15 Analysis source level
Cortex parcellations: Atlases and scouts
Noise covariance matrix
Source estimation (from EEG and MEG recording)
THURSDAY 19th
5:30 – [Global] Deep Neural Network (DNN) analysis for MEEG data
8:30 – Continental Breakfast
9:00 – 17:30 – [Local] Machine Learning and EEG
Session 1: Computational Tools and Pipelines for ML analysis; session chair: Richard Leahy.
9:00–9:25- Arnaud Delorme (University of California, San Diego): “Machine learning and the BIDS EEG data format”
9:25–9:50- Tim Mullen (Intheon Labs):
“Creating Deployable Workflows for EEG Signal Processing and ML/DL Using NeuroPype”
9:50–10:15– Ivan Tashev (Microsoft Research):
“Workload estimation using brain- and bio- signals for adaptive training system”
10:15–10:40– Bin He (Carnegie Mellon University):
“AI/ML Enhances Dynamic Brain Imaging from EEG/MEG”
Coffee Break (10:40–11:00)
Session 2: Self Supervised Leaning; session chair: Takfarinas Medani
11:00–11:25– Dominique Duncan (University of Southern California):
“Unsupervised Multivariate Time-Series Transformers for Seizure Identification on EEG”
11:25–11:50– Wenhui Cui (University of Southern California):
“Neuro-GPT: A Foundation Model Pretrained on Large-Scale EEG Data”
Lunch Break (12:00–13:00)
Session 3: Machine Learning for brain computer interfaces; session chair: Shrikanth Narayanan
13:00–13:30- Alexander Silva (University of California, San Francisco):
“A high performance neuroprosthesis for speech decoding and avatar control“
13:30–14:00– Maryam Shanechi (University of Southern California):
“AI-powered next-generation neurotechnologies”
14:00–14:30– Ludovic Bellier '(University of California, Berkeley) :
Panel Discussion
14:40–15:10– Moderator: Shrikanth Narayanan and Kristina Lerman (University of Southern California):
“The Role of Foundational Models in Spontaneous and Event-Related EEG“
Coffee Break(15:10–15:40)
Session 4: Machine Learning for neurological disorders; session chair: Kristina Lerman
15:40–16:05– Srikantan Nagarajan '(University of California, San Francisco):
“Machine learning algorithms for electromagnetic brain imaging in dementia”
16:05–16:30– Dimitrios Pantazis (Massachusetts Institute of Technology):
16:30–16:55– Jason da Silva Castanheira (McGill University):
“Inter-individual differences in neurophysiology vary with age and disease”
Closing and final remarks