338072
Comment:
|
11025
|
Deletions are marked like this. | Additions are marked like this. |
Line 8: | Line 8: |
Describe brainsuite here : here we will describe the process of the brain tissues anisotrpy estimation and the different functions that brainstorm offers. | Describe brainsuite here: here we will describe the process of the brain tissues anisotropy estimation and the different functions that brainstorm offers. |
Line 14: | Line 14: |
[[https://neuroimage.usc.edu/brainstorm/Tutorials/SegBrainSuite?highlight=(anand)|https://neuroimage.usc.edu/brainstorm/Tutorials/SegBrainSuite?highlight=%28anand%29]] | [[https://neuroimage.usc.edu/brainstorm/Tutorials/SegBrainSuite?highlight=(Anand)|https://neuroimage.usc.edu/brainstorm/Tutorials/SegBrainSuite?highlight=%28anand%29]] |
Line 16: | Line 16: |
The realistic tensors are estimated from the Diffusion Weighted Images (DWI). For this purpose, Brainstorm calls internally the BrainSuite Diffusion Pipline to compute the diffusion tensors on each brain voxel. Afterwards, the Effective Medium Appeach is applied to convert the diffusion tensors to the conductivity tensors. The following section shows to the users how to do it from the graphical intefrace. | The realistic tensors are estimated from the Diffusion-Weighted Images (DWI). For this purpose, Brainstorm calls internally the BrainSuite Diffusion Pipeline to compute the diffusion tensors on each brain voxel. Afterward, the Effective Medium Approach is applied to convert the diffusion tensors to the conductivity tensors. The following section shows the users how to do it from the graphical interface. |
Line 18: | Line 18: |
Only the NIfTI are supported. All the diffusion data, inclusing the DWI file and direction and the value of the gradient files , respectively the the *.nii, the *.bval and the *.bvec are required. Ideally these files should have the same name and saved in the same folder. | Only the NIfTI is supported. All the diffusion data, including the DWI file and direction and the value of the gradient files, respectively the *.nii, the *.bval and the *.bvec are required. Ideally, these files should have the same name and saved in the same folder. |
Line 27: | Line 27: |
1. Download the latest version of BrainSuite from http://www.brainsuite.org/download. 1. Install it on your computer by following the instructions in [[http://brainsuite.bmap.ucla.edu/quickstart/installation/|BrainSuite's quick start installation guide]]. 1. Note that you will be using BrainSuite Diffusion Pipeline(BDP), so you need to install a compatible [[http://www.mathworks.com/products/compiler/mcr|MATLAB Compiler Runtime]](last version). 1. Start BrainSuite to check if the installation (It's not required to open BrainSuite to run this tutorial). 1. The BrainSuite installation folder should be informed in the Brainstorm preferences |
1. Download the latest version of BrainSuite from http://www.brainsuite.org/download. |
Line 33: | Line 30: |
{{https://user-images.githubusercontent.com/6920058/81406567-1c785400-913a-11ea-9048-28c7459af7da.png|image}} | 1. Install it on your computer by following the instructions in [[http://brainsuite.bmap.ucla.edu/quickstart/installation/|BrainSuite's quick start installation guide]]. |
Line 35: | Line 33: |
1. Note that you will be using BrainSuite Diffusion Pipeline(BDP), so you need to install a compatible [[http://www.mathworks.com/products/compiler/mcr|MATLAB Compiler Runtime]](last version). 1. Start BrainSuite to check if the installation (It's not required to open BrainSuite to run this tutorial). 1. The BrainSuite installation folder should be informed in the Brainstorm preferences {{attachment:brainsuiteInstalation.JPG||height="250",width="650"}} ---- |
|
Line 36: | Line 47: |
In this tutorial we use the Brainsuite dataset example available on the Brainsuite tutorial webpag | In this tutorial, we use the Brainsuite dataset example available on the BrainSuite [[http://brainsuite.org/tutorials/|tutorial webpage]]. User can also download directly these data from these links: [[http://brainsuite.org/WebTutorialData/BrainSuiteTutorialSVReg_Sept16.zip|MRI T1w]] [[http://brainsuite.org/WebTutorialData/DWI_Feb15.zip|MRI DWI]] |
Line 38: | Line 49: |
http://brainsuite.org/tutorials/. The T1w of the subject can be download from this link [[http://brainsuite.org/WebTutorialData/BrainSuiteTutorialSVReg_Sept16.zip|BrainSuiteTutorialSVReg_Sept16.zip]]. The DWI from this link [[http://brainsuite.org/WebTutorialData/DWI_Feb15.zip|DWI_Feb15.zip]] | The first file contains the T1 MRI data, with the name '2523412.nii.gz'. as in this figure, |
Line 40: | Line 51: |
The first link contains the T1 MRI, with the name '2523412.nii.gz' {{/brainstorm/data%3Aimage/png%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAABl0AAAE%2BCAYAAAAH09bAAAAgAElEQVR4Aey9DbRtV1WgeQExwS607aYwgF22cVANxLKEN8RwASVARlReglLEIe1fwJGrCC%2BkVdSOFStUEW9sTHiJFs0jSB5IMNUJ8vPgwesCnqEUArlP60EeJVyCYoJ5IybITxdJ%2BFs95jlnrjX3PmutvfbZ%2B5x7zr7fHePc/bd%2B5vzW3OusNedZe6%2B5Hv8%2B%2BXnn7vkKHxhgA9gANoANxG1g2b8nRD7%2BIAABCEAAAhCAAAQgAAEIQAACEIAABCAwK4G1WTPG8i27Mw0naNwJChe4YAPYwKJsYNm/Jwi6xL7dOQcBCEAAAhCAAAQgAAEIQAACEIAABCBQSoCgCytzWJ2EDWAD2MDCbICgS%2BnXM%2BkgAAEIQAACEIAABCAAAQhAAAIQgAAEVpEAQRecrQtzti7ql/TUw6oNbGB5bYCgyyoOFZAZAhCAAAQgAAEIQAACEIAABCAAAQhAoJQAQReCLgRdsAFsABtYmA0QdCn9eiYdBCAAAQhAAAIQgAAEIAABCEAAAhCAwCoSIOiCs3VhzlZWHyzv6gPahrZZlA0QdFnFoQIyQwACEIAABCAAAQhAAAIQgAAEIAABCJQSIOhC0IWgCzaADWADC7MBgi6lX8%2BkgwAEIAABCEAAAhCAAAQgAAEIQAACEFhFAgRdcLYuzNm6qF/SUw%2BrNrCB5bUBgi6rOFRAZghAAAIQgAAEIAABCEAAAhCAAAQgAIFSAgRdCLoQdMEGsAFsYGE2QNCl9OuZdBCAAAQgAAEIQAACEIAABCAAAQhAAAKrSICgC87WhTlbWX2wvKsPaBvaZlE2QNBlFYcKyAwBCEAAAhCAAAQgAAEIQAACEIAABCBQSoCgC0EXgi7YADaADSzMBgi6lH49kw4CEIAABCAAAQhAAAIQgAAEIAABCEBgFQkQdMHZujBn66J%2BSU89rNrABpbXBgi6rOJQAZkhAAEIQAACEIAABCAAAQhAAAIQgAAESgkQdCHoQtAFG8AGsIGF2QBBl9KvZ9JBAAIQgAAEIAABCEAAAhCAAAQgAAEIrCIBgi44WxfmbGX1wfKuPqBtaJtF2QBBl1UcKiAzBCAAAQhAAAIQgAAEIAABCEAAAhCAQCkBgi4EXQi6YAPYADawMBsg6FL69Uw6CEAAAhCAAAQgAAEIQAACEIAABCAAgVUkQNAFZ%2BvCnK2L%2BiU99bBqAxtYXhsg6LKKQwVkhgAEIAABCEAAAhCAAAQgAAEIQAACECglQNCFoAtBF2wAG8AGFmYDBF1Kv55JBwEIQAACEIAABCAAAQhAAAIQgAAEILCKBAi64GxdmLOV1QfLu/qAtqFtFmUDBF1WcaiAzBCAAAQgAAEIQAACEIAABCAAAQhAAAKlBAi6EHQh6IINYAPYwMJsgKBL6dcz6SAAAQhAAAIQgAAEIAABCEAAAhCAAARWkQBBF5ytC3O2LuqX9NTDqg1sYHltgKDLKg4VkBkCEIAABCAAAQhAAAIQgAAEIAABCECglABBF4IuBF2wAWwAG1iYDRB0Kf16Jh0EIAABCEAAAhCAAAQgAAEIQAACEIDAKhIg6IKzdWHOVlYfLO/qA9qGtlmUDRB0WcWhAjJDAAIQgAAEIAABCEAAAhCAAAQgAAEIlBIg6ELQhaALNoANYAMLswGCLqVfz6SDAAQgAAEIQAACEIAABCAAAQhAAAIQWEUCBF1wti7M2bqoX9JTD6s2sIHltQGCLqs4VEBmCEAAAhCAAAQgAAEIQAACEIAABCAAgVICBF0IuhB02QU28IKfv8Ctra25p//oWe6Oz3%2BFNt8Fbb6sgSeCLqVfz6SDAATqBC64YPxddtZZZ7mvfOUr9cscQwACEIAABCAAAQhAAAIQgAAEloIAQRfjfP3ll7xs5JiW7bI6LLvKtRt07MpoJ/PPq30Iuizvyo%2BdtLedqLuPoMv7/8st7vZ/uHcu/bTIt%2Bp/L3vZ%2BLtMtkP92w06rnLbzat9CLqsslUgOwQgAAEIQAACEIAABCAAgd1DYCFBlz/9s3eNghnyS/vY53FPOMNd/qpX7%2Bgv8D915z3utNMeNZJPtnI8T4fkDW97t3vGs852D//2b68wefJT1t0brr9xLiwWrWOdX5MdxGxDz0neenlDO55n%2B7QNushqmJSNSpuI3aqtptohlV/zxVbctLGRPm1iFllTeq/a%2BY9%2B/FPuST/0ZPcffv/KVvfYx2%2B/00mQUPpvvU9lK/3a29/7gWRZXYMuh9/35%2B6yyy5zf3DlVXMJvOSCLu96V/677IwzznCvfvWrd/QX%2BPfcc4971KPG32WyleN5/r373e92Z599tvv22nfZ%2Bvq6u/HGG%2BfCYtE61vk12YG9H%2Br7knfof/Nsn7ZBF1kNk7JRaRuxW7XVVLuk8mu%2B2IqbNjayG2wixZbzEIAABCAAAQhAAAIQgAAEhkpgKYIu6pQQR%2B7NHz2edNbN25k5r1UGVm7RTxycqnNqK05ym6%2Bv/UXomJK1jUO9zqVPB3tKvmU4P6/2KQ26SCBEAqD1YGC9PfQ45qjvYuNtbKQPm%2Bgi6zLYS1cZJMCrbR1ry1T5V/7ha30%2BtQW7zZXVJeiiARcJuswr8NIl6KIMxJF7/PjxHRs3zGuVgVVI9Hvyk5u/y8RJPo%2B/ReiYkruNQ11tQre7xcE%2Br/YpDbpIIEQCoPVgoLZDfXvllVdONXcXG29jI7vFJqYAcwICEIAABCAAAQhAAAIQgMCACSw06CLOPflF%2Ba23bfvPdW%2B5afTLaJ0AD/mdE%2BLgVQenbH/hRRe6dxw5WmEh54TFvIIuKSeqntdf/Oecppp2lq1te92XOoVHzD40zSx1NeWZt65N9S/yeknQRQIucv/pvag2%2Bp/eftjbqLSHHEtgRlY01O2kq41r0CVnC33ZRFdZF9l%2BTXW1tWVJXw/%2B1tsyVaekUxuR/ko4alpZ/SK2IUEZPVffzhp0ed/NHxoFWjTgotu%2BV7yUBF3EkSu/ft/e3vafm266abTiQ9kM%2BZ0T4oxWZ7ZsL7zwQnf06NEKCzknLOYVdGkal%2BnqhJgzvSlvyXXb9rovdQqPmH1ompKy26aZt65t5Zln%2BpKgiwRc5P7Te1Ft9PDhw95GpT3kWAIzslKrbiddbVyDLjlbmKdNzLMNKBsCEIAABCAAAQhAAAIQgAAEmgms3Xvvvc2pClOknGnWkWoddNYZZx15ffyC3Za9DPvWoS2PL5NH%2BqTkkmviuExdn9d5K2OpA7YPWdT5LY72lH30UY8tY6d0tTIscr8p6CKPNrNOeFlxI4zayGiZzmrjJX1FG5lSafuQNVX2os9bXZru2/oKFbnn5CPOyaa8ope2T2n6GIvU90QsrT0n73CRAIsGW%2By2z8BLadBFnLKxP3HeqrN3iL9gtw5teXzZpz71qRiG0Tm5Jk7tRf9ZGevO9HnKoo56cbSn7KPv%2BndK1771KC2vKegijzazK7BkxY0wavNnmc5q4zbosihbaKMjaSEAAQhAAAIQgAAEIAABCEBgvgTWrrrqKtdX4CXlTFNHXc6pro73Ls4866Bbtv1V0K%2BN87ZPvsomZx991idl7ZSufetRWl5T0EWvy/0nj5wqLdem03bscg%2BX9BW2zln3%2B5B11rr7zldqyzadtJEE1rY/d69f3dQUdLH5xV5m1SP1PVFS3iICL12DLup4F8aLdPjPd6gQSl8F/azTfJFtoGwIugR76XuvKeii1%2BX%2Bk3cKzfKn7djlHiboMgt58kAAAhCAAAQgAAEIQAACEBgOgTX5tXBfgZeUM63EkWpfIt7k/Ctxzi1bGuvkFR7LJp/IY52qi2wDZUPQxc3NLjSoEnt8n96f4mDq0u7ajlLOrDausszbFvqQdVnu4dL7VtL9%2BLnPHQVb5DFgbe95bRtZxST99az6p74nSsubd%2BCla9DFvkR8kQ7/RQ1LrEN6WVfyEHRZlDUsvh4NqsQe36eBji7BEtGoDxtXWRYZgFt8a1AjBCAAAQhAAAIQgAAEIAABCKQIjIIufQVeUs40ddblHKlNTlB1GusvrO0LoOuOZHEu6jsOZPKtn8c94YzRY7vkeszBp3XUy5O04oyWcvSalCG/FBedbPmpVQJWP9UhJkPqnNQndUtdOce4TRerJ6aj6qZ6xLYpJ3qMs7zrQ86ndKmfVzY5%2B9A8Vr9ZOHTRVeSUd1jYNhdWJfoqd22TlP1qOrUz1Vu3on%2BM%2Bay2bXl2daZrOwoT1VPlLt2W9BWlZeXS9SGrLT/WJk12obZouYtdSFvqPSi2JjYXexyh5te0sW3qvlXZbfvn7idJr7Y5a9tqnanvCb1esp1n4KVr0KXJYatOY9nKn/waXxyz0n51R7IED/R9HbZ9zzjjjNFju%2BR67E/rqJcnaSUQZOuSMuQRTCqDXJPyU6sErH6qQ0yG1LnSgIhNF6snpqPqZlnV91OBohhnedeHnC/9UzYljnarXy44Z9NZDl10FTnlnTu2zYVTib7KXWVJ2a%2Bmi9mg8BS9YsxntW3LSR4JJsHPWf%2B0HYWJ6tm2LIIubYmRHgIQgAAEIAABCEAAAhCAwLAI%2BKBLH4GXlDOtyZEqjj916KWczXpdtlqeOlNsHnFOihNTr8W2Nr118Gkdsevq4JRr4rDN1ZFyXmr5IlMqjZXH7pc6R206qc%2BWIfsqg9VRdYux0nN1562tR9PUt7aOuhz2WB3gyxp0EV3F8V3Xr34s70SJOcctd%2BGfs99Y%2Byiredi2shdd2tqkymW3Kv%2Bs5SmbEluw9c6y31VWqbPLfaD3nfQlH/v0HT6oWrcrPa4HdDW/Xo9t6/dtnZOVP9f%2BdiViU5n1OurHqe%2BJerqm43kFXroEXcTx2%2BRs1uuyVcestp11UMv7UMR5rNdiW5veDk20jth1ddbLNXEu5%2BpIBQO0fJEplcbKY/etczyX16aT%2Bup/KoPVUXWLsdJz9aCLrUfT1Le2jroc9lid9csadBFdJdhS169%2BLO9ESb2rR7nLNme/mi7Gbh62rexFl5xd2fbK7av8s5anbEpsIScH1yAAAQhAAAIQgAAEIAABCEBgNQlUgi4SeHn9618/syYpZ1rOkSpOX32Bt/3Fd93hpg7Sc35i7yjgccllr4y%2B6FudyFKm/PpcnIpSlmy1DJlExxyMej0WLFAHp5SrH6lL5ZS6dAVEymFsHZcig5STctJrubotdY7adKKP5tdtTkebN8ZHy7DpRFdxBss5uS7by1/1as8iJoOWo1ttsxQ3TaflS/uk2lDTWhljMtjrpbpKnbK6SR/NJHXJvtU3ZcPKvcl%2BNV3MBpVTn7aduzeVZZttFxuXevqWJyd7V1mtDc1yH2ifIjYjdlEvQ2Qv6VesHDlbjrEozau2p/eo2H1spZ/cC1JmrC49l/qe0Otttsdu23byvRX7vPZ1r8/Kkapn1qCLOH31Bd65X9qrM3fv3r2jgMcrX/nK6Iu%2B1YksZcqKAHGYy59stQzpk2IOZr0ec3hrYELK1Y/UpX9Sl66ASDmM7SPURAYpJ%2BWk13J1a4McMdlj6USf%2Bl9Ox1nqEF1l1Ybl/OpXv9qziMlQl0nbLMXNpp9FxpgMs5QjbSarm%2B68804vkuxbfVM2rNyb7FfTxWxQOfVp230HObrYuEDtWx7fUOxAAAIQgAAEIAABCEAAAhCAwEoQqARdur7bJeVMU0eqTPRTH3Hg5Zx16oyW/JI25TCTIIY4KmPXrYMx5tTWOmLX1EEq9ceuS33qmJQ0UlZMBpFPnOaWgxxL3lh6PWdlzzlWbbqYDDkdbd5cHcpCnMWpoJG2uTppVY/YVrmVpC2V0aaLcbDXS3SV9hKdYvLLOdUh1fbKXa7n7FfTxWxsHratbVnCPqV7/fysNi7lqN3Y%2ByO2H2vTuhwlx11kVXaz3geaX/TL8bfBoZhdlNpyjEdpXm0X0fUdR476oGqsbaQ/E5lj9cm51PdEKn3q/E6udInprefEma2O%2B9goQJ3Rkl7Spv4kiJF6tJV1tMec2lpH7JoGXaT%2B2HWRR53ikkbKiv2JfOI0V71lK8c2gBPLZ2Xf6aCLspAAQypo1MZ5rtyWMeiiuko7iU6pP9Uh1fZqW3I9Z7%2BaLmZj87Bt1a%2BEfUr3%2BvlZbVzKUbsRTrlP6v6qy8IxBCAAAQhAAAIQgAAEIAABCKwWAR906RpwEbVTzjR12OUmnnJNnHUpJ746o3POyZRzzp5XR6c4D%2BuOQa0j5tjUfCJnyvluHZixMqwc9p0eyiWnvy1bZLFl2X2bLuaYzulo86bqsA7gFAeRp6QslVsDFiVtW1quTRfjYK%2BX6JpKozrIVtJIW%2BZsq0nHXPvYumL7JfXX7TKXJ1ZHm3NtbVzKLu0rYm3aRrZ62ray9nEfKHuxGdmvy2SPNW3Mfkps2ZZl90vz1ttF5LAr3HTli/ZldTuzdaa%2BJ2yapv15BVykXpEv9VfqSM2t/FBndFfnsDqZYysStI6Yw1vzSVulnO82MBIrw/Kx7/TQ9s/pb8sWWVJ/Nl3MMZ3T0eZN1WFXMqQ4iGwlZakOGrAoadvScm26GAd7vUTXVBrVQbaSRtoyZ1tNOubax9YV2y%2Bpv26XuTyxOtqca2vjUnZpXxFr0zaykRYCEIAABCAAAQhAAAIQgAAElpPAKOjSR8BF1Es509RhJ446WYVy623b/iO/mv6dV1xe%2BeV0zJnfxRltHXjqvMw5xmMOw1y%2BWPmxMmw62ReHZ93Zq87MWFopUxwhOQetdaLGHNM5jjZvqg5tyxi/usxaV0wOm3ZZgy6qa8zRbeXXfdVD2qhuw8qiyS5K02mddpuz0VS5uTy27Fn329i41GGZ1/sK229IubPKlMrXRlaVs8t90IZ9zrZK7tucziX9iuortp27H1Sn2D2gMqS%2BJ/R603aeARepuyToIg5nWYWyvb3tP0ePHnWXX365fxyVMIg587s4o%2B0wIudkztWRyxcrv%2B7ctml0Xxz/dce0MJJz9b%2BSIIHkselijumcjjav6Bv7U6d4LLBQT691xeSwaZc16KK6NgVKVBfVI2bDyqLJLkrTaZ12m7PRVLm5PLbsWffb2LjUYZnX%2Bwrbb0i5/EEAAhCAAAQgAAEIQAACEIDA8Ais9RVwETQpZ5o67HLOOus4jDky1Wks2yannFyX8iSgc9UfHXC/%2BEsb7hnPOts97gln%2BMc85OqIOcbVmRi7ZuUpTWfziKz2vSDi6JBy6mlKnKOWY4yVcozpYfPW61dZVD%2BRsfQTk0PLk606lHP2oelLZJS0Nl2sfnu9SdeYrag8dptb/aDcY7LYMjRdrH00ncjel21re5aw1/pn2YrMTTYu5Zb0FbPU3yZPiazKrfQekHT1ttcySuzL2lbdXktsOaV/aV5tF9GjXr8t28pZ11fTpb4n9HpuO%2B%2BAi9RdGnQRx3Tszzr8Yw59dRrLtuRPypOAzoEDB9zGxoY7%2B%2Byz3RlnhO%2ByXB0xx7g6p2PXrDyl6WwekdW%2BF0TsRcqxf5ZP/VoqXYyVcozpUVKH6tfmHo7JYWXWYEVJcKNERinbpovVb6%2BneKquMVux8ut%2BbhWQco/Jovllq%2Bli7aPpRPa%2BbFt1LGGv9c%2ByFZmbbFzKtUGXVF8xS/3kgQAEIAABCEAAAhCAAAQgAIHVILB277339iZpypmmDrsmx64638UJInms802d0SlHnqYVJ%2BIvvOjCxoBAzNGpdcQc3uogjV3TumVbms7m0X15tJrIJfrXWZU6R226GKucjjZvyrGq%2BrVxVMXkUJ1lq%2B1e19mm0f0SGSWtTRer315v0rWpzVU263Cul6ncY7JoftlqulidInPftq33Zuyes3L1tZ%2BzcalD5Smxhb5kSpWTk7WP%2B0DLiPVFdZlytlViy/Xy9Lg0b5t2ydmw1Jv6nlCZUttFBFxUvtSXYqkjVZ3vcl9JHvunzugmp7U4dy%2B8sPm7LOZI1zpiDm91TseuWTlL09k8ui/vwhC5RP%2B6E7wkSCDl2HQxVjkdbV7RI/an%2BrX5LovJYcvWdq/rbNPofomMktami9Vvrzfp2tTmKpsNutTLVO4xWTS/bDVdrE6RuW/b1nszds9Zufraz9m41KHylNhCXzJRDgQgAAEIQAACEIAABCAAAQgsD4G1PkVJOdNKHXY5x6I68nJOa5tfJt7ioL7uLTeNnPryzgFxqOUcnVpHzOGt%2BWLXrJOwNJ3NY/eVlcgvZem1UueoTRdjldPR5rV1qwyy7aqfLUv3lz3oUuIUF12s/Uk7qn6yVe6xNomlq9uZLbtP27blNslm5eyyn7JxKVOvLUPQxcpTvx/7uA%2B0jBL7su1Ut62S%2BzbVXqV529yjaut1G1YZUt8Tej21fd/NH3KXXXbZ1OcPrrzKSUAmla/teZEv9VfqSO3qtLb5xfbEQX3TTTeNXlJ/5513jsTToMEyBl1EQGUl8lvHfUmQQPLbdDEHf5NTX5z99bptuyq/WFDApmuzv%2BxBl5itxPSz9iftaP%2BUe6xNYunqfG3Zfdq2LbdJNitnl/2UjUuZeo2gSxfC5IUABCAAAQhAAAIQgAAEILC6BAYVdLFOTPmVeszZZtOII9OmyTkLNV/KkajllKbT9PWtda5KWXrdOkdzzvGmdDkdbV5bt8ogW3WKlziKbb7cfhuHrpWxCwdbTpOupQGAnB7KPSezMNJ0dTtTuxLufdu21ikOsLpDP9dus15L2biUp/ZVynxWGUrzpWRVObvcB7ZN631RXT6tL8alxJbr5elxaV7LoclG1J5Stj5r0EVkPvy%2BP68EXfoOuEgdyxB00YCAOMnlF/WxP5tGHM72Tx3jdYe3pNF8sWu2jNJ0No/dt05wKUv/moIppelyOto6bN1atmzVKV4aiLB5U/uzBl1yQQKrSyydvd6ka2kAIKeHco/JYrlourqdqV3Nw7a1TvkuqweLrGx97adsXMpX%2Bypl3pdMlAMBCEAAAhCAAAQgAAEIQAACy0FgqYIu6liMOX%2BbHHniLGuTJuYs1fx1h7eUrQ7S2DW5rp/SdJq%2BvlXHvTCQsvS6dY7mZLD5Y07PnI62Dlu3yiBbW34qjU1fsq9lxhzK9fxWxi4cbDkpPayjOZXGyidppN1ythVrE1tGqn30fC6/psnVH2Om/FX2VFDHytll39ZX56p9QIktdJGhNG9K1tT50nIlndpLrL%2Brl6NtG2u/Eluul6fHbfKqDDkbLLlnugRdRG4NvMwj4CLl9xF0UYertG3d%2BauO4ZzTuk2aWNBA89cd3jLsUKd37JodlpSms3nsvjruhYENBtggQU4Gmz/GKqejrcPWXSKfTdN2X2UucbRbGbtwsOWkdM0FB2I6atvnbCvWJrasVPvo%2BVx%2BTZOrP8ZM%2BYvN5YI6Vs4u%2B7a%2BOnvtA0psoYsM5IUABCAAAQhAAAIQgAAEIACB5SSwNEEX66zLOY1zDj91CsYck%2BJMs47SXB2x/OogjV1TB6ZsU%2Bne/t4PjF4kLk5Om76%2BrzrEnM5aduyalGMdqOJ0iLHS8mN62PyxvCqrlpGSQ9OJ815enq7Hqa22S1N5mr8PDm11FZ65X/irDpJO5FNZdavMclwlraart0/qvJZv629r21KGMhX5pR3ecP2NUzpoXbqVNFf%2B4Wt9uj5sfFFBlz5k1TZpstvUfWCZ19tbGctWmaRsq9SWbZm6b/PG7FbT1eVI3QuqU8wGtayuQRcp5/3/5ZZeHymmssm2a9DFOrhzTuMSp3PMsSxDCevszdURy68O9dg1O0xJpfvABz4wepG4OPtzf%2Bo4jzmdtezYNSnTBhLE7mOstPyYHjZ/LK/KrWWk5NB0stpIXp7e9Kft0lSeltMHh7a6Cs96IFDlka3qIOlEvvqfMstxlTyart4%2BqfNaj62/rW1LGcpU5Jd2uPHGG7Xo5FbSvPa1r/XX%2B7Bxgi4eJzsQgAAEIAABCEAAAhCAAAR2JYGFB11ueNu73a23bfuPOIt/5xWXjxy9MkmWT8z5pw5O2VoHmd1Xh5%2BU8csvedkoCCHXxbEoDmJxjj75KeuNqxFiDlAtO3YtJkM9nXWcPuNZZ/t3zSiLq/7ogHvSDz15JJvIH9PTOtZFF2GpdYtjV/LL%2Bcc94YxRObEylGNdPi1Hr9vypV5xUmuauhwSWNF35kga2Rf%2BUkZMBi1Ht1qepJd9PZ/aanrhZOWU9KUcJG2JrhIMtO0ietV1Ff1FDpGniWsTD5WpXo7a3zxsWznbOqQesSPRTXirnb7jyNHK/Sp5NH8fNq5laLtqvbGt3Ndad9ut1iN69nU/tr0P6rzFzuw9LfpdctkrfZ9Qtwmrs9qNcpNr0m72vrXpdb9N0EXyaD3CTWTTNtB7Xs7Lx9qF1qXbPoIuWtY8tqVBl3e/%2B91ue3vbf8RZfPnll48cvcphVqe1dRy/7GUvGwUhZIQiDnZxEIszeX19/F3W1jGtZded4fURUCqdOpNFx7PPPtu/a0ZZHDhwwD35yeG7LOact4510UVY6p8EOCS/nD/jjPF3WayMJue9XrflS73iUNe/uhwSWNF35kga2Rf%2BUkZMBi1Ht1qepJf9pj9NLyytnJKvlIOkLdFVgoG2XUSvuq6iv8gh8qTsQ%2Btq4qHp6uWoXUkdfdu28rZ1SD1iR6Kb8FY7PXr0aOV%2BlTz614eNaxnarlpvbCv3NX8QgAAEIAABCEAAAhCAAAQgMCwCCw26yOQ39xGHof3lvHWoqbNPtva83bcOxFg94jBXR2fsl9haR8y5qfli16wMqXTWyRuTzZ6zASNbtuxr%2BTa97gu/IzffMnL8y7kYq5yOUr4NaGi5shX5rSypdDaP7Iu8Nl9sX8sS%2BWU/lqZ%2BrisHKU/rrctc17UeeKmn1%2BNcuyn3WJtY3TRd3c7madu2fnH62yCT6hbbSntZp34fNt6mjCaWVq/6fpt6cu2asqE6r9h9oDYsfZEEs4RnPZ8eS5uIHdb10OOUHHVb1vS6tXYVk1HT6damV9nq26ZyhhB0qetcPxZHq/3lvB02qDM657S2qxfqZcuxOKvVsbyTQUBUM3wAACAASURBVJeYbPacdapbBrKv8tv0ui/8brnllpHjX87FWCnHulNf67EBDS1XtuIMt3%2BpdDaP7FunvM1v97UskV/2S/66cpA6tN66zHVd64GXeno9zrWbco%2B1idVX09XbZ562beuXQJ4NMqlusa20lw3GacAklrZ%2BLsWqTRlNLK1e7EMAAhCAAAQgAAEIQAACEIDAahBYiqCL/KJeHJt2BYE6%2BXSrzugmR6s4Be3KA5kgS/n6uCTr6Kw7MbWOusNbZNB8sWsqY1M6WYUhq3pktU3dwSrn6r%2BUt%2BXafXGMy6/z7eT/F1504WiVh3WKxljldNQ6xIFrHe%2ByL%2Bf0um6Vta6sUXl0hUSuPbUM2arDuE3QRfJ14aD1l%2Bpq67NtJ/vCPsZH65Ctco%2B1SSxdzM6Ut62/D9u29eu%2BsBW9Ym37/J/52cqKDM0j26423iYY0sTSyhXb7yqrlqntEmOVu6e1T9EAsMgjzPU%2Bkq3c59IWWldu28aWtRzbXzQFSzSPbEUm20fofSA62HSx/SEHXeQX9eKEtSsI6kMBdUY3OVrFOW1XHog9SPn6uCR11i866CL6yCoMWdUjq23EYW1tVs7VV4zUGeixOMZltYzNf%2BGFF47Kt875GCvlWHfqa9mylWCEdbzLfiwYoqx1ZY3Koyskcu1Zr094tAm6SP4uHLT%2BUl1tfbbtZF/Yx/hoHbJV7rE2iaWLtY/ytvX3Ydu2ft0XtqJXrG1/9md/trLKSvPItquNE3SxNNmHAAQgAAEIQAACEIAABCCw%2BwgsJOgSc7xxzjU6J2EEI2xguDZQD7rslrZe5aDL7hsioDEEIAABCEAAAhCAAAQgAAEIQAACEIBAWwIEXb4yXKfubnHioic2vIo2QNBlOe02906Xtl%2BwpIcABCAAAQhAAAIQgAAEIAABCEAAAhDYfQQIuhB0YcUNNrCyNiCPCJRHcMnj%2BUo/qfdGLTpwQ9CFoMvuG3KgMQQgAAEIQAACEIAABCAAAQhAAAIQGD4Bgi443FfW4b5oJzn1LZ%2BTXIIu8k4UfQdDybbNu0vm2eYEXZbPnqS9Weky/IEPGkIAAhCAAAQgAAEIQAACEIAABCAAgXkSIOhC0IWgCzaADeyADRB0Iegyzy93yoYABCAAAQhAAAIQgAAEIAABCEAAAhDYGQIEXXbA2TrPX89T9nI6cmkX2qVuAwRdltMmWOmyM4MRaoUABCAAAQhAAAIQgAAEIAABCEAAAkMhQNCFoAurHLABbGAHbICgC0GXoQwk0AMCEIAABCAAAQhAAAIQgAAEIAABCEAgECDosgPO1vov3jleTucr7UK7YAP924CsJFlmrqx0CQME9iAAAQhAAAIQgAAEIAABCEAAAhCAAATaEyDoQtBlqR2gy%2BycRbbldp7TPsvZPgRd2n9RkwMCEIAABCAAAQhAAAIQgAAEIAABCEBgdQgQdCHoQtAFG8AGsIGF2QBBl9UZICApBCAAAQhAAAIQgAAEIAABCEAAAhCAQHsCBF1wti7M2crKg%2BVceUC70C6LtAGCLu2/qMkBAQhAAAIQgAAEIAABCEAAAhCAAAQgsDoECLoQdCHogg1gA9jAwmyAoMvqDBCQFAIQgAAEIAABCEAAAhCAAAQgAAEIQKA9AYIuOFsX5mxd5K/pqYvVG9jActoAQZf2X9TkgAAEIAABCEAAAhCAAAQgAAEIQAACEFgdAgRdCLoQdMEGsAFsYGE2QNBldQYISAoBCEAAAhCAAAQgAAEIQAACEIAABCDQngBBF5ytC3O2svJgOVce0C60yyJtgKBL%2By9qckAAAhCAAAQgAAEIQAACEIAABCAAAQisDgGCLgRdCLpgA9gANrAwGyDosjoDBCSFAAQgAAEIQAACEIAABCAAAQhAAAIQaE%2BAoAvO1oU5Wxf5a3rqYvUGNrCcNkDQpf0XNTkgAAEIQAACEIAABCAAAQhAAAIQgAAEVocAQReCLgRdsAFsABtYmA0QdFmdAQKSQgACEIAABCAAAQhAAAIQgAAEIAABCLQnQNAFZ%2BvCnK2sPFjOlQe0C%2B2ySBsg6NL%2Bi5ocEIAABCAAAQhAAAIQgAAEIAABCEAAAqtDgKALQReCLtgANoANLMwGCLqszgABSSEAAQhAAAIQgAAEIAABCEAAAhCAAATaEyDogrN1Yc7WRf6anrpYvYENLKcNEHRp/0VNDghAAAIQgAAEIAABCEAAAhCAAAQgAIHVIUDQhaALQRdsABvABhZmAwRdVmeAgKQQgAAEIAABCEAAAhCAAAQgAAEIQAAC7QkQdMHZujBnKysPlnPlAe1CuyzSBgi6tP%2BiJgcEIAABCEAAAhCAAAQgAAEIQAACEIDA6hAg6ELQhaALNoANYAMLswGCLqszQEBSCEAAAhCAAAQgAAEIQAACEIAABCAAgfYECLrgbF2Ys3WRv6anLlZvYAPLaQMEXdp/UZMDAhCAAAQgAAEIQAACEIAABCAAAQhAYHUIEHQh6ELQBRvABrCBhdkAQZfVGSAgKQQgAAEIQAACEIAABCAAAQhAAAIQgEB7Ar0HXcShxgcG2AA2gA1gA6tqA%2B2/SskBAQhAAAIQgAAEIAABCEAAAhCAAAQgAIExgbVPfvKTjg8MsAFsABvABrABbAAbwAawAWwAG8AGsAFsABvABrABbAAbwAawAWwAG%2BhmA72udCGSBQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAR2KwGCLru15dEbAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBXgkQdOkVJ4VBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCwWwkQdNmtLY/eEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI9EqAoEuvOCkMAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACB3UqAoMtubXn0hgAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoFcCBF16xUlhEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI7FYCa1/4whdcyccCuu%2B%2B%2B5x%2B7Hn2IQABCEAAAhCAAAQgsEwEPve5zy2TOMgCAQhAAAITAvTPmAIEILAqBOivVqWlkHMnCHB/xKkTdIlz4SwEIAABCEAAAhCAwAAIMAkYQCOiAgQgMEgC9M%2BDbFaUgsAgCdBfDbJZUaonAtwfcZAEXeJcOAsBCEAAAhCAAAQgMAACTAIG0IioAAEIDJIA/fMgmxWlIDBIAvRXg2xWlOqJAPdHHCRBlzgXzkIAAhCAAAQgAAEIDIAAk4ABNCIqQAACgyRA/zzIZkUpCAySAP3VIJsVpXoiwP0RB0nQJc6FsxCAAAQgAAEIQAACAyDAJGAAjYgKEIDAIAnQPw%2ByWVEKAoMkQH81yGZFqZ4IcH/EQRJ0iXPhLAQgAIGVI3DnnXe6n/u5n3Oy5Q8CEIAABMYEmARgCRCAAASWkwD983K2C1JBAALTBOivpplwBgJKgPtDSVS3BF2qPDiCAAQgsJIEJNBy1llnjYIusiXwspLNiNAQgMAcCDAJmANUioQABCDQAwH65x4gUgQEILAQAvRXC8FMJStKgPsj3nAEXeJcOAsBCEBgZQhowOWaa64ZySxbAi8r03wICgEIzJkAk4A5A6Z4CEAAAjMSoH%2BeERzZIACBhROgv1o4cipcIQLcH/HGIugS58JZCEAAAitBoB5wUaEJvCgJthCAwG4nwCRgt1sA%2BkMAAstKgP55WVsGuSAAgToB%2Bqs6EY4hEAhwfwQWdo%2Bgi6XBPgQgAIEVIpAKuKgKBF6UBFsIQGA3E2ASsJtbH90hAIFlJkD/vMytg2wQgIAlQH9labAPgSoB7o8qDz0i6KIk2EIAAhBYIQJNARdVhcCLkmALAQjsVgJMAnZry6M3BCCw7ATon5e9hZAPAhBQAvRXSoItBKYJcH9MM5EzBF3iXDgLAQhAYGkJlAZcVAECL0qCLQQgsBsJMAnYja2OzhCAwCoQoH9ehVZCRghAQAjQX2EHEEgT4P6IsyHoEufCWQhAAAJLS%2BC8885zEkhp8yfpJR9/EIAABHYbASYBu63F0RcCEFgVAvTPq9JSyAkBCNBfYQMQSBPg/oizIegS58JZCEAAAhCAAAQgAIEBEGASMIBGRAUIQGCQBOifB9msKAWBQRKgvxpks6JUTwS4P%2BIgCbrEuXAWAhCAAAQgAAEIQGAABJgEDKARUQECEBgkAfrnQTYrSkFgkATorwbZrCjVEwHujzhIgi5xLpyFAAQgAAEIQAACEBgAASYBA2hEVIAABAZJgP55kM2KUhAYJAH6q0E2K0r1RID7Iw6SoEucC2chAAEIQAACEIAABAZAgEnAABoRFSAAgUESoH8eZLOiFAQGSYD%2BapDNilI9EeD%2BiINc%2BaDLnj173E5%2B4lg5CwEIQAACEIAABCCwDASYBCxDKyADBCAAgWkC9M/TTDgDAQgsJwH6q%2BVsF6RaDgLcH/F2IOjSMWgTx8pZCEAAAhCAAAQgAIFlIMAkYBlaARkgAAEITBOgf55mwhkIQGA5CdBfLWe7INVyEOD%2BiLfDYIIucfXmd1ZX18yvBkqGAAQgAAEIQAACEOhKgElAV4LkhwAEIDAfAvTP8%2BFKqRCAQP8E6K/6Z0qJwyHA/RFvS4IucS6NZwm6NCIiAQQgAAEIQAACENhxAkwCdrwJEAACEIBAlAD9cxQLJyEAgSUkQH%2B1hI2CSEtDgPsj3hQEXeJcGs8SdGlERAIIQAACEIAABCCw4wSYBOx4EyAABCAAgSgB%2BucoFk5CAAJLSID%2BagkbBZGWhgD3R7wpCLrEuTSeJejSiIgEEIAABCAAAQhAYMcJMAnY8SZAAAhAAAJRAvTPUSychAAElpAA/dUSNgoiLQ0B7o94UxB0iXNpPEvQpRERCSAAAQhAAAIQgMCOE2ASsONNsKIC3O1uvPQSt/eCS9xFh%2B6eWYc7jh11V07KkbL2Hjgxc1n9Z%2BxHx/7losTdQoD%2Bebe0NHpCYPUJ0F%2BtfhuiwfwIcH/E2RJ0iXNpPEvQpRERCSAAAQhAAAIQgMCOE2ASsONNsKIC5AMStxy4ehyQyQRR7jg0TjMKtkjAxQRdSvLPH1xex/nXTw27nQD98263APSHwOoQWJb%2BajnGD6vTbki6GALLcn8sRtvyWgi6lLOqpNyxoMuxG8YTttHE7Wp3410VsTIHJ9yVk8nelccyybgEAQhAAAIQgAAEBkSgt0lAZQw2caCrI32yvejSq92VB466G4/NvjJiQOhXXJVcQCKMq/decIO7JabpXUfdRWoXh064OyppCvJX0s/rIKfjvOqkXAgEAp3754J%2BuRL0NH02c%2BLQDuxBAALNBDr3V5Eqxqthr/bjBe2vRuPJY3fXxg5SwLKMHyLKcGpXE5jH/TEEoARdZmzF5Qi6XOL2Xno00hHHlAqdMwPMGB/OQQACEIAABCAwRAK9TQJaO/eudldOOduHSHioOuUDEk2/NPWrXBJj9ab8i6Ga13ExMlDLbibQuX9u3S%2BHgDlz4t1seegOgfYEOvdXtsq7ao8eNQFhDbzY1bE263KMH6xE7EPAuV7vjwEBJegyY2MuTdDlgktc2YCRoMuMTU02CEAAAhCAAARWmEBvkwDv3Lt6tJLljrvudvZzy7ET7sZDN7iL7Ps7ZBKdcLr3gdT/QrLDO0f6kGOYZXQJSIS8y/UOl3pLBTm7vLemXirHECgl0Ef/bPthv39MV5rF%2B2tJxx8EIACBNgT66K9G9ZmVsHsvuNpddOCou0VWtUzGlbccO%2BpunDzCdLnHEG3okXboBHq7PwYGiqDLjA2680GXG9yVB/SXOonHGlR0I%2BhSwcEBBCAAAQhAAAK7gkBvkwAbdGl6vOtdJ6ovT59L4AWH%2BXwNuAvfkHe5HSZBToIu87UmSo8T6K1/rhfvnZptHsddL4RjCEAAAoFAP/1V%2BN4dPZ40N56UseShE0EA9iCwxAT6uT%2BWWMEZRSPoMiO4ZQi63OIHk5e45gkdQZcZm5psEIAABCAAAQisMIHeJgFtgi4jXnZifYnr36kdyu%2B/7BVu8N5E78I35G0eo/cm8AwFBTmxoRnwkaUzgd7657okfp5M0KWOhmMIQGA2Ar30V75vmse4cDa9yAWBPgj0cn/0IciSlUHQZcYGWYqgi3POPy%2B68TFjBF1mbGqyQQACEIAABCCwwgR6mwS0DroItDD%2B6v8xYzjM52uWXfiGvARd5ttKlL7aBHrrn%2BsYvGOToEsdDccQgMBsBHrpr3zfVPqagNlkJRcEFk2gl/tj0UIvoD6CLjNCXpagi3NmUpd9dEWY9KffAXO302eDV17edWn%2BRbA%2B8KP133Vi9AzKi8zLwC46cMLdUWF9t7tFnntu0uyVeo6VPV83JudFl94wesZ6pRoOIAABCEAAAhDY1QR6mwTMFHSxP5BJOf/ajb/8uMuOoWr7qbHePMZPXp5FjgMjY00Zu7YdC6Z43DJ63EcYY8dWgdyij/lVveUu8zaijwCub4MNRPNH7tSUjDd2HDOX6BgRh1MQ6JVAb/1zXSrv2Az3nE3i778LSh7THfoCG0T1fZ8p445j9fd6Td7XkHuEkBGs6/1uimIXAhDomUAv/ZXvm0qeVhNXwPdfdvzhnPPna2PCim/PXFvkWDGuCWeHRKCX%2B2NIQCa6EHSZsVGXJ%2BjinDMdd2xSOFaxIegiz4s0HXC0Y6516orODzjlupFlugwd1Naec16rVwI06T8z6K3l8/Ul5EyXyRUIQAACEIAABIZKoLdJgHeox514SX5mbDQ1Tpth/OXHXalxUHT18/zGT16eRY0D9eWyGf33XnqDGwcVUq2SH4vKmFJ%2BCHTjpeOgyVS7WeeGHXd6G6kHW/Q42I53jtj8FXFD/X6MW9c5mVcK6q5jRRwOIDAHAr31z3XZfL8b7rlKEn%2B94NfmPm21LN/3jYIuzfdr/seFzfn7Xy1ZIcIBBCDQQKCv/sp//8uPRQ6V/ejYiubz18YA/nx9rBA7jvrc6IcsZ/bbEejr/mhX6/KnJugyYxstVdCl8pix6mAwqBeCKtGItg4mJ6tFwqqUuysR89iXgh9wXnr1eOXKpUfNRFfyX%2B38ZPHA0ckEVlbP3B1Wv1ReOJvSwX4JjFfFVOS0K2eiXyKBBnsQgAAEIAABCOwOAr1NArxDPTVOSfEMYzD7K%2BlR6g7jL7vaOTY%2BC9LMd/y0M%2BPAS9xoFbX99fhd9VXU%2BmOfQGK8V%2BNxqLoae/xLcw2StAy6%2BKpMHYkxqXeO1JwmURmPmTGzq%2BkZLd/Uf8H0ivVSHb067EBgTgR665/r8mnfekGqvzb3SPQeDAWm7lXf911wg7tytPKtPj91o6dIhCc7FMgi92vr%2Bz3Iyh4EIDA/Av31V2ZcKAGRxh%2BKVHVK9UnVVNNHPp9ZnRdSmT6RfihgYa%2BYQH/3R3GVK5GQoMuMzbRsQZfmZ4aHjj0edDmReTSX6YAjg9Iw4EwvkQwd/HjyGpfhaHjcWGQCGerJ/HpxZofIjIZANghAAAIQgAAElppAb5OAmccYZhxVH9/IY7KSj4ky%2BSLjr9Kgy7zHT6H8RY0DG36Z7p2tcXmCvCkHqJizYZ/4Jaof2za0zVSgbXK35PIHGWcb84b83XRc6hsb4QZBoLf%2BuU7D9wOZe6CoTw9z6HpwO9xnMr/N1NPwbq9Qzmz3e111jiEAgfkQ6LW/qvzoePJDj1HwpXnlS278kNI89DPxvipcpx9KMeR8nkCv90e%2BqpW6StBlxuZavqBL9TnS9UGhDcpEAx4NHCqdcC1tuBbvwEfJ/cBXIvlHwwqXWlnpL5Aw4M3LHybJ0wxqlXEIAQhAAAIQgMDgCfQ2CShy0MVwhrFJygEfyyXnwhgrtmojlJse88x//BRkXMw4MK1roBhkqnMLPBrLMWPXWNr0mFXkCG2TavN0/iDjbGPekD8md6BU%2BojiSg4OINArgd7657pU/v7N9EsmGJK8V3y/X%2B9LbP/c/Iig0CfV5Qn362z3e11xjiEAgXkRmEd/NXoPVP3xXw0rX9Ljh4Tmvj9M9VX0QwlynG5BYB73R4vqlzYpQZcZm2Ypgy72%2BdJTSwZLO9I4kDBQzA04p6%2BF0kL9yUGtlb8emMkMeEMd4z3/JVT/NWk9IccQgAAEIAABCAyeQG%2BTAD8WqTvNmhCGMVDKAZ8qITf%2Bso795NjKy5wbo41rn3X8lJdRNQsMkrIWjQML2RsHQ8WR6XmUlJOX2fOqj1lHKncIungZZ2wzn7%2B7jtp6bCEwLwK99c91AX0fkL8PutzHZX3fRDAvT22lnr9fZ7zf63pzDAEIzI3A3Pord7ebDr6MHzUYUybfb9VzhLFMcgxKP1SHxvEMBOZ3f8wgzBJlIegyY2Msa9DFrmipdqqhs61MPqf0lw7/hLvl0FF35YEb3JXynpbJS0TH72WZHhD6AWd00qkVlNWfKsufr/8KIHdM0EXhs4UABCAAAQjsOIEvfvGLnWSYNX9vkwA/Kc078aaUNM62dMCh/firJOiyiPGTr2Mh48DpcegU79GJ%2BLjTyzr146RYKSFwEmu3vNMj5K2Ox0M9qfxBxsnjRnJjXb1mxrwhfwmrIGdMxyAte0MnMGv/qlxmzd9b/6yC6Nb3uw39tU9XC4ZIOf5avIx291rok%2By9FsqY7X5XddlCYDcRmLW/UUaz5p9bf6WC1d/ZNtPjTX1hox0/1siMe%2BiHqsxW/WhW%2B1a9Z80///tDJVytLUGXGdtreYMu1ceMhQBLGOiFc1b5u92N9oX3Oomb2k5P4HwnvZDJNgNS22rsQwACEIAABCCQJ9DbJGDWoIvPF3HqyWOoZhx/7cqgS3asae0gjHujDs6icvIBCe/IiJYV8u5Y0CUql2Uk%2B0FOy6meimMIzItAb/1zXcCGgElIHu6B%2Br3aNMf11zPOzFBPQ580NefOzHlNkDWUzx4EIDBvAnPrr%2BqCy/tefJ8wHfTNjz9CYaGPmi4jpKo%2BKnH8Q%2BtM/6Ny0Q9ZhOw75xZ2f6wYbYIuMzbYUgddzARqrx8Eho57OugSrkkne9GBo%2B5GWe1y193ujrvGgEKHvcNBl6IJ5IyNSjYIQAACEIAABAZHoLdJgA%2Be5CevdYB%2BcuzHZJqi2/irxGHux29zHD%2BV1RF0nR6HKg8z8a/J6%2BuYYhjyVvfi9bUrJzhjYwEJ3641WcdyhLx1R67KmcrvZYyWq7nTW5%2B/iFWQM6ZjuhauQKAfAr31z3VxioMu9geLdp4b70NsNe3utXh5vowZ73crD/sQgMB8Ccytv4qJ7cec0%2B9hSY0fKsX4PnA6fyWdfX8g/VAdDcctCCz0/mgh104nJegyYwssd9DFLofWTjY%2B0BP1/WBPJmeTIEsdSyVN7aK/lu2k0/Xb4pJl%2BS8dOxi2OdmHAAQgAAEIQAAC0wR6mwT4sUiLoIvPo%2BOxIJ8f88w4/ioJujhf//zGT16PhYwDC9l7Z0MtvedROx%2BaxeyFsWssIJF3eoRgRtugS%2Bc261FHA4NdCMyFQG/9c126VB9QTzc6Dve6Dwr7%2Byjdd/q%2BryTA6cur9T3%2BfLqeqMichAAEFk5gbv1VVJPQL9XHIPnxhxQW8qbGIJUq6YcqODiYjcBi74/ZZNyJXARdZqS%2B9EGXSjBFBneh4/WDyYnuvtPOLBH0aSKDSj/gnOdk2w%2Bcp50WMzYh2SAAAQhAAAIQ2AUEepsE%2BElpzWmWYmjGLmHlcUjsx1Yzjr%2BKgi5GhvqkPUjSbW8h40DjQCjRw8tUH7e24eHbOz729O0XHf92CLq0kTHWdG3yN%2BgYK55zEOiTQG/9c10ofx%2BU9de%2Bz5j0x3p/5/obn%2BeC2KMjqwJpeXvr/YWXM97PVEvhCAIQ2EkCc%2BuvYkpl%2BoZkfzIpx1%2Bvj4Fi9ci5TF2pLJyHQJ3AQu%2BPeuVLfEzQZcbGWYWgi52M7730anfR5PmLyaBLfRCobEwnHHMa%2BAFnKv%2BonHTQR6uRba6s8OXRMHiWANOhE7ZY9iEAAQhAAAIQ2KUEepsEeAd1wzhk6kWo8fR%2BXJMaPzWMvyrjvKLATVwObxYzjp9yYzdftgma1MehIU3pOLDBwWm4TTtMTTDkggwP82Ol0aN3D91txRzt59vP1JNom1x%2Bfy0no0gRbTNTdy5/gY5TSnMCAj0T6K1/rsvl%2B4HMfW7zVNIfncyb83l93ydz7FQ/LnX47454YKXb/W6VYB8CEJgngV76q2NHR76qOxoEzfUL/lqk3wn9Ur7/qlfvy8yNGyRTdNxRL43j3Uigl/tjgOAIuszYqKsRdKlGrfWlWPXJbuiY5X0uJ1z4Arjb3XHshtGg86JLr3bj/NNLn33%2BSKcf8HYPutgI/N4Lrh5/WdnHod11t7vlwCS4lJjgBnnYgwAEIAABCEBgNxDobRLgHWdXuxuPyXvv7OeEu%2BXYUXfjAR0v6UtI05NeP34avU%2Bv/fhL2q4yST42CQzcJe/mMy3rnYkiU//jJ6/HvMeBEri5VLlOxqz1ceCh8bh1NGZNyePbccJD2tLjCmPfvZfe4OubDt4Y9tF6TOAjMSb1bRfL37XNetLRY2EHAnMi0Fv/XJfP30PpPriaJdyzft6buHc1n%2B/79MXSl94w%2Bm7Q6xIYv%2BWQ%2BU6I3euS2Ms6nz46yMMeBCDQhUAv/ZX5fr5o1Gfou5THY8pbDh31Y4/RWCbSDyXHD6YviY1bsrqbvPMYK2br5uIgCPRyfwyCRFUJgi5VHsVHKxN0qUzIxxPVetCl8ktJHTSa7SgQ4weMOxh0kdapfBmEibcGlHTb%2BkumuOVJCAEIQAACEIDAKhHobRJgJso63shtqz9kiRELTr5YOU3jr1GJiXHR1Fgvka5e7yzjJ%2B94TDkUR4L28OMbLccEXury63ETe/1Rkaaf2l4q493QPjEuSafHSM6QN/U89Xz%2B7mPePnQcqcI/CMyRQG/9c11G3%2BeVqo5AEAAAIABJREFUBl2qK1KkT5jqR2t1%2BL5PHuHj60vMT0d9Sq0Ae9iUfzI3j/VFthj2IQCB%2BRHopb9qMZZMjWXi44cwzpoa0xjfXrgW6Rvph%2BZnPLug5F7ujwFyIugyY6OuUtCl8iKt5ABSfoljfh0oHfOlV7srJ7%2BarAwqa8z8tYVMtqXyiaz1SbfIe%2BiEu8P%2B6rEmK4cQgAAEIAABCOwuAr1NApomyvIo18kvncPKiSbWs4%2B/fMl31X4VKTJEx0LzGT8tfhzo3B3yeA7z6NyxE%2BFqd9GBo%2B6Wu6YfBeZZ2Z27ToxWJunjd0dl6FhylC4ETmKOzrjTQysIeWcOukxkGI3PZx3zdtRRtWELgXkR6K1/rgvonYcRx2I9rT82TsvsvHacwfd9%2Bt6Eyf0WnJqX%2BO8EX0V2Zz59dLZKLkIAAsUEeuuvpK8Q39vUOEb6jGafVmz8EfqjROB3KvCS6hvph4oNgoQVAr3dH5VSV/%2BAoMuMbbhjQZcZ5SUbBCAAAQhAAAIQ2I0EmATsxlZHZwhAYBUILFf/HIIusUBrnWdwck4/CaKelmMIQGD1CSxXf7X6PNFgWAS4P%2BLtOZigiwZBFr2NY%2BUsBCAAAQhAAAIQgMAyEGASsAytgAwQgAAEpgksU/8cgiipX4BX5Q/pCbpUyXAEgWESWKb%2BapiE0WqVCXB/xFuPoMuePa5LoCaOlbMQgAAEIAABCEAAAstAgEnAMrQCMkAAAhCYJrA8/XPzIwHr0hN0qRPhGALDJrA8/dWwOaPdahLg/oi328oHXeJqcRYCEIAABCAAAQhAAALOMQnACiAAAQgsJ4Gl6Z/9O7vKVrkITYIuy2lTSAWBeRFYmv5qXgpSLgQ6EOD%2BiMMj6BLnwlkIQAACEIAABCAAgQEQYBIwgEZEBQhAYJAEdr5/vtvdcewGd5G%2BZPrAiWLOBF2KUZEQAoMgsPP91SAwosRACXB/xBuWoEucC2chAAEIQAACEIAABAZAgEnAABoRFSAAgUES2LH%2B2a9sucTt1YDLpUfdHS0oE3RpAYukEBgAgR3rrwbADhWGT4D7I97GBF3iXDgLAQhAAAIQgAAEIDAAAkwCBtCIqAABCAySwI71z5Wgy9XuykMnWgVcpDEIugzSJFEKAkkCO9ZfJSXiAgSWhwD3R7wtCLrEuXAWAhCAAAQgAAEIQGAABJgEDKARUQECEBgkAfrnQTYrSkFgkATorwbZrCjVEwHujzhIgi5xLpyFAAQgAAEIQAACEBgAASYBA2hEVIAABAZJgP55kM2KUhAYJAH6q0E2K0r1RID7Iw6SoEucC2chAAEIQAACEIAABAZAgEnAABoRFSAAgUESoH8eZLOiFAQGSYD%2BapDNilI9EeD%2BiIMk6BLnwlkIQAACEIAABCAAgQEQYBIwgEZEBQhAYJAE6J8H2awoBYFBEqC/GmSzolRPBLg/4iAJusS5cBYCEIAABCAAAQhAYAAEmAQMoBFRAQIQGCQB%2BudBNitKQWCQBOivBtmsKNUTAe6POEiCLnEunIUABCAAAQhAAAIQGAABJgEDaERUgAAEBkmA/nmQzYpSEBgkAfqrQTYrSvVEgPsjDpKgS5wLZyEAAQhAAAIQgAAEBkCAScAAGhEVIACBQRKgfx5ks6IUBAZJgP5qkM2KUj0R4P6IgyToEufCWQhAAAIQgAAEIACBARBgEjCARkQFCEBgkATonwfZrCgFgUESoL8aZLOiVE8EuD/iIAm6xLlwFgIQgAAEIAABCEBgAASYBAygEVEBAhAYJAH650E2K0pBYJAE6K8G2awo1RMB7o84SIIucS6chQAEIAABCEAAAhAYAAEmAQNoRFSAAAQGSYD%2BeZDNilIQGCQB%2BqtBNitK9USA%2ByMOkqBLnAtnIQABCEAAAhCAAAQGQIBJwAAaERUgAIFBEqB/HmSzohQEBkmA/mqQzYpSPRHg/oiDJOgS58JZCEAAAhCAAAQgAIEBEGASMIBGRAUIQGCQBOifB9msKAWBQRKgvxpks6JUTwS4P%2BIgCbrEuXAWAhCAAAQgAAEIQGAABJgEDKARUQECEBgkAfrnQTYrSkFgkATorwbZrCjVEwHujzhIgi5xLpyFAAQgAAEIQAACEBgAASYBA2hEVIAABAZJgP55kM2KUhAYJAH6q0E2K0r1RID7Iw6SoEucC2chAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQCsCBF1a4SIxBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIgTIOgS58JZCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEINCKAEGXVrhIDAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATiBAi6xLlwFgIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQi0IkDQpRUuEkMAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBOAGCLnEunIUABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACrQgQdGmFi8QQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAIE6AoEucC2chAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQCsCBF1a4SIxBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIgTIOgS58JZCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEINCKAEGXVrhIDAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAATiBAi6xLlwFgIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQi0IkDQpRUuEkMAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBOAGCLnEunIUABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACrQgMOuhy4LhzfGCADWAD2AA2gA1gA9gANoANYAPYADaADWAD2AA2gA1gA9gANoANlNtAqygDiSsEBh90qWjLAQQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAkkCEpzib3YCBF1mZ0dOCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgMCgCBB06dacBF268SM3BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQGAwBAi6dGtKgi7d%2BJEbAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIDAYAgRdujUlQZdu/MgNAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEBgMAYIu3ZqSoEs3fjuS%2B7N33eVO/6lfdGvPPtc9TD4/dq572LnPc//juee775x8/vm557tHm8937/03Tj6P3nuee8ze57m/%2Bpu/2RHZqRQCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASWlwBBl25tQ9ClG7%2BF5/7wxz7mHn/h5e60F93sHnTZlttzYMvteceW27P1BfeLW3e7ja1vuo0t5353y7kDk891t97v/tOxL7q3fez/c2%2B89Q53/UfvdS961X90r3/72xcuPxVCAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIDA8hIg6NKtbQi6dOO30NyywkUCLmuXfMCt/V9bo0816PJxt7H1jUrQ5Y23fsW95aNfcDf91y%2B7//fT97sj2/e5m//%2Ba27rHufedOiQ23vxxY2fhSpJZRCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEILBjBAi6dENP0KUbv4Xmvu32293ak5/u1n70HLd21vhzylnnuFOefY475Zy97uHn/Jj79nPOG32%2B85zz3CPOOc898py9o893/di57lE/ca77j//5I6OAiwRdHvjqV93td97pP%2B%2B87U531eFPuovfe6d7yoG/dN//qveOPue89KUL1ZPKIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAYGcIEHTpxp2gSzd%2BC839zW9%2B033l/vs7fZ77a7/m3nnb50aBl098oSr%2BX93r3Js/%2BmX3iq2T7pk3HHOnHthyTzyw5Z5w/vnVhBxBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIDAIAkQdOnWrARduvGba%2B5/%2Bsd/dJc%2B7xnu/Eevdf4895%2BvuT1ra%2B7md77TycqVN9/y39z9X6%2BKH4IuX3PPvOGT4/fFEHSpQuIIAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgMCACRB06da4BF268Ztbbgm4vO5Xf9x95hVrzh3o/nnNj625vQ8fB11E6H/7mte4y//07RX5Q9DlS%2B6ZN3x8HHT596x0qUDiAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIDAgAkQdOnWuARduvGbW25Z4dJXwOXlT1xzl/3LNffix4Sgiwj%2Bpne9y5178cX%2B8yMvudg98YKXuv/thRe7R/z0he47nvdC9x3PeqE7urU1Nz0pGAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABJaHAEGXbm1B0KUbv7nlPvMha%2B68R/Tz%2Bf0z1tyBPdNBlwe%2B%2BlV3%2B513umf%2Byq%2B4P9/ach/5rze7d7z3Z9wvXLLHXfu2t42uyXX%2BIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAYHcQIOjSrZ0JunTjN7fcz3/8mrv/vu6fc793zb3mifGgiwq/9%2BKL3ZOe8hT3qEc9yj384d/mvuVbHuy%2B9ZRT3Kmnnuruu%2B8%2BTcYWAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEBk6AoEu3Bibo0o3f3HKff8aac27NPXDvmrvvH9p9vnTHmrv35Dj/eaengy4nTpxwD33oQ93a2lrl8%2BAHP9g95CEPcY997GPd/fffPzcdKRgCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASWiwBBl27tQdClG7%2B55dagyz3Xr7m/fvGa29oo//zWv1pz1/xWc9Dl3nvvdT/90z/tHvnIR7pHPOIR7rnnPtNdcMH3u6c8%2B1%2B4n/ulX3Kf//zn56YfBUMAAhCAAAQgAAEIQAACEIAABCAAgTYEjh/c5/bt2%2Bf2bR5xJ9tkJC0EIAABCLQiQNClFa6pxARdppAsxwkNurj3rrkv/cGa%2B8Jfr7kvHC/77FkrC7qIpp/97Gfds37%2B592f3nSTO3HbzW5r6xfc297zbHf7Z7eWAwRS7AoChzfWR6ut1jcOT%2BmbuzaVmBMQgAAEIAABCEAAAhCAAATmSOD4wc2R03/z4PE51tKt6FWQMadhTn6CLjlyXIMABCDQHwGCLt1YEnTpxm9uuW3QxR1Yc%2B7r45Urr33tmjv99OnP%2B98/vi6PJGsTdBEF3vO%2B97mfecEL3L/%2B19/vvvd7/yf3mMd8m/ue7/lud/rpp/f%2BeLHtw/vdxvrYwe4fa7a%2B7jYOb7vtBprb%2B2v5ao9FG5e37vZnCupSv9vedof3b7j19erj2NbXN9z%2Bw5lKW%2Bi1nhM%2BVs72YbexvuZK83XSP1Z/L%2BcOuw3flhuuGnbJXeulcgqBAAQgAAEIFBM4eWTsaBv9wlZ%2BZRv9bLojLX9668stdOD59Pv2uc22lTnnfP5IfSePH3EHN2t6bm66g8dPFv6i%2BKQ7efyg29y0fDbd5sEj7nhLLqOGOXncHdycTU9tWK/vjLy0nOi2q3xd80eFCic76T5X2Y67g/7%2BOeiKXdcnj7hNn2%2Bfi5hwUD67Z%2Btvf89mi%2BbiwggE%2By5tw9DuRX2nsbeQPpSxb18L2y2kEnSyfWjZfrgf5itjoSryZVO5X%2BPfmRPdKqtW8vITdCluARJCYIEETrrjR2Ljv%2BPu5Czjv4rkHco%2BGcu7z21uHnRHigemPY9tVbfjBydziabvkkyf6MtIfE/IGP7I8cIxvAoWtgRdAotZ9gi6zEJtAXlSQZcrrqg6/DVwcehQ%2B6DLJz7xCXfqqae6U045xcl7XB70oAdV3u0iZX/lK1/pSdttt78WrFDZ/Xa97nCvVn14I667zz9y3KeCLh3rP7wxxaZa75qTVRrtQy82qFAePBEy24c33PokWNEcdOmof7Upej/KrWbJXetdEAqEAAQgAAEIZAh4R49x%2Bk47kUqdf1pRmEgFh5lei21Deqk7OAJjaWPnQv5qfSfdkUqgJDJ522yaFDaVIcGbmEzxc6PgzYR1ez21zKDvbLy0nOltV/m65p%2BWqH5mdt3nLlvNSVBsF3UnbnHGKpuqY7vtPVsti6MdJGDsoaiPsHZXcfLHdQh2UrWR3CqMeEnlZ0OdkT44991T02eeMhZrY9pn%2Bruypl8L%2Bf13cS1PsVwkhAAE%2BiXQeK%2B3G/9VhOtStu3zE/2nrFjMx4T6HdtWdPPy5cbXtv7qd9GoLF9GrU%2Bd0jeStyJM/ICgS5xL6VmCLqWkFpzOBl3%2B/j%2Bsuds/tuZuP1H2KV3pcscdd7gnPvGJ7iEPe5j71lNOcd/9mO9y3/d93%2Bke%2Ba/%2BV/e4H/5h97nPfa43rUPApLaqZbR6xKxgWd%2BfDFz4MiS4sb2d/MSE9nnXZqx/EnQZBVZMZGV7%2B3AlmNQc/KhKV1%2B9U5J/vFqlGoBqytdZ/6rYHEEAAhCAAAR2JQHv6JEJ2smTyU8rODpZKnQe1R1yRY5GK1CiPq/bvtqqltEvBM3Kl6Sc1UmhrIzRP1k9E1YnNE/6xqttqpPH1npOKu/MS5Uw267ydc1vRMnuzqL7omQL9jZp59LgyZTzpdmepiFVg1H79s1SxnSpnNkJAqbfSfZNQa6q3TW3u09fUHaopete%2Brul/r2jgZWltWFzv45WS2a%2BN9v8En5n2qVru5IfAkMlYL9Tx2NI1VTGFG3Gf5ovbDuWPRnzjgIrYVjqTp48XvmhUXqMab5jJuNjla27bs45HZMnV01W648ubvdlbI5W7tjvieP11eszfJcRdNEWn21L0GU2bnPPpUGX9/3emnvm/zB%2BZJgEU0o/1/zWeOXLeaevudc8cc0d2LPmXvyYNXfzO99Zkf3YsWPu%2B3/yJ90lr3iF%2B9BfvG30TpcDb/kR99f/7ZZKuq4HI6d/JqBigw%2BR13qMqtfAQVOAISZr5/oP7888tsyuIsmv1qnKVl3lIitncrpty6PN/GO4JOiy7o9z%2BaTOzvpXBecIAhCAAAQgsCsJqKMnPTlriyVMpsrKtJPPsbO6LJ/Kla5vpFtmMmYd%2BFH/uJ30mYmt1lx5zEy0AHkSzUEzORf9Nv1xOz211q68tJzxtqt8XfNXpWk6aqf7Tsl28GDpozUm%2Bnon7mZ4hF3CnpKE1FY31b6ane/Jsriw4wS0X25%2B1Nf0PZE3HZM%2Bn3BnGPh7YZYVjwsS2cjYJ0Lf5pnvrAVpSDUQ2PUEwvgw9V06e1/auezjRzKP/A1j4uT3h44XUj/OMH3cvlk6OV9%2BfKWL7%2Bv2ZR6n6stI8TePFc6Vk7Bkgi4JMIWnCboUglp0Mg263PaRNffBQ%2B0/n/lEWdBF9HrTn/2Z%2B7Xf%2BA33vOed6575zO91T3/6I9055/yo27t3r3vggQd6Uf3w/vQKlnEFIQARDyCEwEb8el7M7vXnyw9Bo9TjzabzhyDSfv9Ok7RuQf9RcGb0KLNwLp1vQrcz/2n5OQMBCEAAAhDYXQTC5Gy2AECElp%2BsxSdb9Rw6%2Bdo8csS/D6OVLJn6jh850vB4hTBpnq4zsMlNOsPkOaavKUMemzZ63EM4N11nnc70cWdelSKDLKPHlLWWr2v%2BijCNB%2B10X6xsFTvwNlnoOPbpN93BycvMk86SKKWg6%2BZBDfKlHRXRIji5XAS8wynjlBKJve0cdAcPFqyw8ukbyt0RGsGO9y1z4GFODLV/W2rdd8QuqBQCiydQcj%2BWpIlJXpKvJE2sbDkXxiOxcYDpZzMBlVBGbGybqnly3n9/TecN5TaMj3wZMR0m9Zi%2BuO14mqBLQxs2XCbo0gBopy5r0MW58K6WWfZzK10%2B9alPudNPP909%2BtGPdg972MOi73Xp750uTSRDAGEtutQlXG8KMDTVFL8eyo/XH8/lz/p3vhSudNH0o9U/TQEnqUXkWx%2B/N8Y/3izI3J1JKGsm/T0IdiAAAQhAAAJDJRAmX20nLCkifqKYmcz5vDqpGjnYcgEQn2Nqp1V9U7mD/lOBFTOZy6qSTSflb46DLX6lTKizNfMeeFURdJWva/6qNNmj1rovUDYX2nRsR%2Ba4xHnsbUicCzPcB8pGHuVRKStLlItLTSDYwVTfZOT2DqzNI%2B74EX1k4rSjS7P49MnHvmjKxW%2BDbBkn2%2BLFmq7R32P9Bq78d1lJnzEtFWcgAIHeCJjv8MwAMPRZ6T53WqR5lj2pzY4J6gKU9l%2Bl6erly3Gqfn%2B%2BIeBSKSP3fRC%2BJ9uOpwm6xBqu/BxBl3JWC02pQZdP/99r7q9e0u7z7p9dc6/5t80rXT796U%2BPAi72hfAPetCD3Lc85jHunz360e5v/uZvFqhzcPrHAwghMBGNyXSWtKn%2BfAV%2BpUvmEWqhhLou4Tiue8hZ3esmc19lTeu%2B7Q5vhEefjexrffwunWqd4UhX/axF%2BOWuhRJye9tu/B4c8%2B4geZTb%2BoY7PApgpTn6uiuPdau%2BT8feP/OxzZxuXIMABCAAgcURCBOWzLyyhThaXm6SpMVpWnVchePyyZPmKalP67XbMPmdqtNPDpsm0ypDwSRyVHWmTiva1H6oZ9xW4XhK9qm8bU7MKp/WUZ5f390gK4Dyf0HXbrqXy5aXp3Y15pzw9lNgmz7/OK13vhY5xms61cqqScrhChHwdpB0wtfavtHmQvrYaopcfd656GU56eT%2BDe812Of2bVbfe9AKtbfbfD9aJKO5b04ePxge2Td6AbMEwY8483quVmKOEhtZG7uuWuk5%2BXPXbDHjd1RpgG3ySM7Ng6P3Hth07EMAArMTKLkfS9LEJCjJV5ImVracm%2B6vTUr/PdH32LahDtNv5n5I4EvxcmbGUKbMtn0xQRdPeqYdgi4zYZt/Jg26uPeuuU/9xpo78e/W3InLyj7y3pfSd7rcdNNN7pFPfar7iZ/8SXfo7QdG73S59Oofdu/7yF/MX8lKDSHwEHdcN12vFDbDQZfyQ96SoIl35HtF2%2BUPyqWDBSFN6V6QwYtVmLUSdNkO5dhghO6n%2BHgmvQddDruN9XSQROTaOJzm6OUqCbq0BVfIl2QQgAAEILAsBOrO7G5yZSd6taL9hNLPlIIspUGENvXVqp8chjq9GJMr5WUbR2a9kGilIX2pnlJMH7yi4kydnE2%2BUExhfjNZbnphdn%2B6F8oWlCna8/IZZ69zwbYaHQyexcS54I81IJkRw6et5804KjLFcWl5CPg%2BqPG5%2B9rWwebifUv%2BurdjH1gJLLwscs2sxpLHEtY/8bpDWdN74b6MBYNs%2BiIZR/ehKTMio8h8cNbIi7/nCu5PK7ztxyOMc7qNi2nWqYlfTRwOIQCBFAHv9E/c56YfaN3nzbNsM/aIyVXpy1O6j86b/qZobGsK8/ppYCd89xT3Ub4M/X4z5U/ka%2B4z63nCMUGXwGKWPYIus1BbQB4bdHEH1pz7%2Bnjlyoc/vOauuGL6s70dHkPWJugiqvzegQPuNQcOuFe%2B8nfcxRf/kNu373Husste5q644gr3ta99bQHaOucd92upd6KknfmyYmH/eMnCzLI21x8penvbHTYvt18vcbrrY8XW7GPIgm6poESk9skjx8YBhXb5pkubSf9JMT7v%2BsY4wDFaQeKfgTZaZbLugxbx9vXBjV6DLoHr2tq629h/2AWp3GT1SzUg05ajl7vSntN8OQMBCEAAAkMgYCZCNcfUZutfzoayGudnfjKlEzJhGfLHJorTtEP6xvqmM4/O%2BMlnxKnpJ3MFhfu0EUfadNVhIlumZ%2BpRDUH/4nKmhYmcmUG%2BSinl%2BYtWuvRiKypguWyao3mbbgdvF5VgTKRE77wJzgWft8GmfDq100hZkRo5tQoEfFsmVn9E7g1vDzG78emDnVkMuby%2Br9w86A5uyqoWeZSdf2aik9UXYdVLvHxbl933ZTfdJw1BC1vO%2BP0245U3QUrXSU4vs2kXve38tYadHOPcNWcfYbivrtdJd/yIvstpn2sM8jbIyGUIQGBMIPQp1VV8lf6ubScwgdt72Ser/UBqBbHvZwrk9mlj3yc5I/HfNTLGD%2BOu0fdGLp%2B95suY/j4ZBf7le2g0b7HzCFtAfp%2BgS55P01WCLk2Eduh6KugiARddNWC3hw61D7p89rOfdXv37nVPfepT3SMe8Qj30Ic%2BdPReF1vuQt7psr3fqVM%2B6fQ2aax8lX3/uKiWjWbKTtYvRZp0tt7wmKqmekMQoBqfCeez9U8Vn16hMZU0d8Lo1a7%2BcaE%2B6CKBlUjQZJTK1BF7Z4wPXkTy567l1dLHicUDPRPp3X6zEqaN/kHvXPk5CbkGAQhAAAIrRcA4j%2Bq/VvbHI%2BdagVZ%2BgtQ0AQpO6uqcL5wvCiIU15eQ3egeq89PNqtCRgvzaYsmpmECGqt3uoLApSpKOF9WznTJ8TNt5auX0jW/LS/o2I/ufco2kdPb4bRjIDzXPPFLWVXV26IpI3ZO0%2Bs2liZ2TtOzXTECwV5jjnTf75ibIzjypvvh3DUB48uL9GMhrwRcjjgbyPBQve21cPybPEYNX2R9p1jGSCA9lBX6laQuIfH0npHZf0/WfrQwPm/u50kpOflz1wJ/CXZNizQ6k%2BuLElk4DQEI5AmctAHN2n0ugY3U7ZgvdXy1U9mJfkh%2BMJXsI2w/X9Dh5vqkrH6%2BLzroxgFwCZBMfyeVlaHBleltF/4EXbL0Gy8SdGlEtDMJUkGXf/qnNXf77dOf//7f2wddtre33WmnnVYJ4oze6XLaae7bTjvNffCDH3Tf/OY35wvAOuMjDndbucg7/ozPjvYP73cb6%2Bpcl4CUXUFicyf2W9SfCrqMAjC11R3TtYUAyXTQYQeDLm30n1ZqdCYEH%2BRRXYlEzugfaedcYCV3LVUhNZq4AAAgAElEQVSbcy2YGgbFQZdZ8qSF5QoEIAABCKwIgZMnT7rxZyzwaP/4EXdw0z4zvmmyFJyD%2BQBASDftRAyOsHwZImcopzltpCHsZDXqQAzlT8s5XV67iWkou1n2kHZajja8pmVOnwl1NssXK6Vrfi0zlNOf7qHM2XRT2cI23/ahjaZ1CGU4b4/WSRtkTeX1jlhrw9GyTF3srhQB38ZTDqtgWxXfmW//eqCv2Z5ythzkqJdrcZo6rE3aJJV9k76iRCVR5aBUxqb7O%2Bhj77lKVekDw3gxQZdEW09JGHg26T%2BVlRMQgMA0AXmUol9RMe30l5UbR3IRjukSw5muZef6odpKRFOpO6L6FPS5uf42lBnZ80EXw6zoO8GUFSujFvQa9b8NQSZTYmWXoEsFR%2BsDgi6tkS0mgw26PP9Ra2791DW3/rCyT%2BnjxSSg8prXvMb9sx/4AXf64x/v/uS6K9xf/uX/7l78iie5t77//XMPuGwf3vArXJIrJApxW8d/qeO8c/0SBBoFfcLqo1Td%2BcBBiwBBhUcIZKTqrSSvHXTWf1JeYJ8PePl0iwi6%2BMe4laxCacs/pJ8OoNUgcwgBCEAAAruGQHBMJR5voyT85C/vwMpP4IJjqdFhVFifime3oxcr68QtOQkMzquUw9uWmdfLppT9UHaTnvlyW/Cqi5A9LpcvXkzX/ONS56N7P7J5vb0dpu%2BPcA9l7g1fTi2NdzrUzo8ECO1f8Z2kyvJCs7NSBLwN1IId/nw9IJ6wcW8XtXIMjNw9F%2By4Xp8poOkFztWk4WXPUwGlWkJz2IeMo%2BIKeJhqq7uVvPqjhfi2mjG/miipW7Kt66Wb8iudwnQ6zkAAAg0EzH0uK%2BIqsZWTJ92Rg%2BGHSa1vt3mULT%2BgGv1gKgQ6pseY4fuh/7Gt4Wn7rJquxSuDfBmbo8BW%2BIGY6HncHamtQGrbBgRdTHvNsEvQZQZoi8iiQZcrfnXNyX7bz5uvGq98Oe/0NfeaJ665f/f4U9z1V13lRf/EZz7jzjj//Mrn9Oed70479/nu4T9%2BrnvYs891D3r62W7taXvdp%2B%2B4w%2BfrZ2fbHd4Iq1PkXSj2XRuz1RECEM0BnP7r9wGF0YvZqxqEa6mgRHDitwueBJ3b5uuTv9cvEkyxJHLpckGp3DVbvt33dRWtfGrH0ctTVLaVin0IQAACEBg2ATNBSwYoyhw9zU674ESenihWKXvnVKtZ1kmn7xCRX8c1PZagTR1t0pYGXfrkVaXXdBTavKkd4iV1ze8KnLHltlKVsbtstrzQRrGgyCSlcTgkefo09XLS8vq66/dlsiwrOfurQyBu68n2TwU%2BrAMr4fXy/VjdplJlRiDm5Kok9/Kkg0CV9JODIhmLgjhxrrE6p875e6yd7FJOTv7UNc9UfyxQsm313TilIScgsMsJhP4hF5wI92b9uzuHb55lj%2BsNck33Ub6fKegj2qStaOz790mQ3h%2B3ePSkz5NjG8ZIbR9fRtCl0mKtDwi6tEa2mAwadHEuPDZsln0JuvzKo9cqAZfXvvWt7revuWZKkffffr%2B7dOs%2Bd967ttyeK/6zO%2BVX/9h918Yh94Tzz59KO/uJw%2BOXrY9erL7u9h/uHm5RWcoc7fOqPzjuK6sf/IqL3KO3Fhl06V9/z30Zgy4NMo1tJ7RdU/DK67pWsoJGLZMtBCAAAQjsFgJh8pb6hbNOIDMTIz95mp4ABo5aTnrVwDitpsvUFwqd7NlHRIx/NTeVpHbCTzYjDshqUjPpK5jEFgVdeuVVlbb5KOiTDBJkC%2BmYf666d5StoncoK/%2BIofCr0%2BT7I7wTd9qm4/ef3gOReyVTVkV8DlaGwHRfFGwveo/6eyjY03QZ0%2Brn0ng7bOgPy9IF%2B805NKclzActfN0EXVxbrjHWnIPAbiUQ%2BpLQh8ZZhL4s2hdHMs2z7FBd%2BI6o9wW5fj7kl710GdV0kSP/HRTmDb5e%2BdHTkUTk3xbly2hoAz/myc0vbMHjfYIu00zanCHo0obWAtM%2B/eFr7uJzu3%2Be%2Bm1r7v1vfauX/N9fe627/j3vcV//xjf8Odn5uy87d8OtX3S/%2B6FPuqe%2BccvtefnN7l9uvME9aeNAf0EX8x6M5tUoFfHKDnyAI7GiZM71%2BxUQ3tEfnPmj976MAk3hUWT5cyVO/VB%2BU7BgBHBO%2BvtAhNc73ly5dNPsQhm5ayFVdc/XVbQapZCj4VfEuyoSRxCAAAQgsBsI%2BIlPmDxZtf0EMumMMxO3kl/oVtJMT7aa67PSjX6i7Ta1zKSMtTz2l92NDry2k%2B7AIz7xDNeLnfmqX/bl0dM6xs%2BE%2BuPyxXOFs13yh7zz0T2UP5tuQcvwHhYTVPHtkD4Xjct5p8G0vTsXsa/cPZkty8jP7uoQ8O09sY/GNg42M7a3Mrv3TrFIP1na75ak8/U09q3TTeTz5mQsKrfOaLqu5BnPv52TT8rLyZ%2B6VsI0KSsXIACB1gT8vdjYl4S%2BNfmjilrt8yzbVuXrqfWVvj9p1C30ka3HS/47y84bDKt9BX2nLyM2Lqpo6g5Oxl5t5CToYhm23yfo0p7ZQnLcefvtrq%2BPvLtF/mSFy%2B/9P%2B9xf/WPX3Mf/ydX%2BRy7x7k/vfWL7tW3brnnvGPL7fmjLbfnpQfdqb0FXcxqjl4eJzbdDHlH%2B/zrnw4OBGd%2BPsASC8T0HXSZn/6e%2BxIFXVxTAK5iPobN/tTKq5CmspKpUg4HEIAABCCw2wnkJ2hhEhV1Jo/ghTTdHemhrHR9tsXMpPHgcVfw27qQuXTC5x1wTRNDLTroEJ8ghuvdeWmdbbah/rh8TWV1yR/yzkf3UP5sugXdvUNDHBfyLPXs54h3CtR/dToqscGG/D04cp406NBQVtCAvZUh4Nt04qjyfZN1aFW18fYpHaXPn%2B%2BjfJ6ak05KrtpgtS571JjOy17gdLMFT/aLZGx0Jo6iH27cx%2BSZREQwPNvrkJM/ec0zS7d3VE5OQgACMxHw92JjXxK%2Bj1cl6OJ8f9LQ9xV%2Bb0QB%2BzrqfVYYk%2B/bt%2Bmy43hfRoOcsR%2BmRIWqniToUuXR9oigS1tiO5he3sNy6plnzvz5yd95lbv%2BI593rz/2jVGA5a3Hv%2Bze/RnnfvuYcy8%2B5tyvbP21%2B%2BWtrfHjxQ5suT37bnUP3ri2l5UuPiCxcXhOBE2AI%2BL8X2j9Vsftbbfd%2BAkO/fX9h336ZlBB56aVF/PUfymDLm1WpfgAzZpLcfT8ilbONLccKSAAAQhAYIgEGiaUflJUn1jVWGQd0uqwDpOxzSPHvRO7UlJpfZNMfuKcndlVajAHVp50uKbRyWhKHO8GpknHf1%2B8puouOVEgX7aYjvnnqntH2bzewTaiQRSfLux4W4w5cZqcG/76PnfwyJHJyq2EI8KnTVwPIrG3MgSC3Yq9eVvK9Gu%2BXxJ7K%2Bw3fblzC7q0v2/qTVQkY8GvqHPl1OucOvb32IKCLqa%2B5HfGlJCcgAAEZiUQ%2Bs%2Bm79H2fdo8yw76Vr8zwnnZCzLn%2BhMvZ%2BT7oFpe5Cj3nWP6Mwm8JJ805svIpBmpc3ASQG/XHxN0ibRbi1MEXVrA2umk8kL7J%2Bx7hfvBP/oLt0eCIlePt895x9%2B5ja2vu2u2nDuw5dy1W99w1916v3vLR7/gPnzXN9zWPc596B%2B%2B4V5/69%2B6X9/6mHvV1gPuskOfGQVT5H0tD3/a09zaM3/crT373PHnaWe5f/Gc5/jr3fXWoELJ6o3ZavOO/8iL7J3rWP/2/sZ3z4T6Z9FR5Us7/eNUSoMuWv4sssVrtme97pFgV2k6H9SIlJG7Zsuv7gc2axIoSS1g2VY249VGsaCL14/3uFQRcwQBCEAAAhUCftKVcGKp4yo3casUmD1ongi2q0/La5iwZWQK%2BifKMJPHjP%2BzVkOYDHfjpvoVPh%2B7JkX6sKt8XfOnJQtXZtW9J9m8M6DFJD%2BXx9tRws7sY4n0EWYpgysoK3Bkb1UI%2BL5oc9M/LjFlAiOdjB1sbk4ed5fNkH/0Vaj/SHbFYC6d9t9tX3hs28iXEXEE%2BrrlHolc9%2BWYe3GmPtizbXH/TyrPyV90LeeklDpOHncHjxz3qrIDAQjMQMDc47m%2BxN%2BziTFytOauZZ884o4cT/8QSOoMfWF8TNF0PayObN/HjXT2fWziB1n%2Bunw3NaWJ6zBmG8aCyXKijeAcQZcEmMLTBF0KQS1Lsj8/dsz98G9e4X7wdz/o9vzytW7P5e8dPQ5sY%2BsLPujy5o9%2BeSro8p5P3ueuuPVvnaR7%2BlU3uZdf84depb0XX%2Byedd2H3I%2B945j7xXe81u35zV9077z5Zn%2B9845fSSDO75KVH9uu7iPf3r/h1jf2j/MbgbbFab6%2B7vzju%2BwqE03XtX5dNbG%2BMQq%2BBNlEl2r9Mae9ipHeBsd/u/whsJDN11V/59zhjTHj9QhfH5SIBEyszrl0ucBK/lparvCIMQmorLuNw9autt324Q23Lu/ZWd9wG%2BuJoIu2/VrbgJjVnH0IQAACEBgCgZNHDrrNg0fGj0cyCp0Ux83mpv/1WPTX/H7imJsQmUIbd8PkKeoIa1ufn9SVPP5pstpmSsYg0%2BgXeWaie/K4rjhocPBNldmT47/w14pT1Tee6Cpfef7jB8c2ttngDJ4WObRL1FamM0zOlMuWLMIGQHKO3akCgsxTTpwS2/ZpxEmRued8ukyaKdk4sfQEfLvq%2B4Ka2jfYuj6qr%2Bk28w7EiF17J13kmmWXTOf7Y1mtpasby7a2/CIZNTC5ebDmnDzpjh8x32sNuth6K/umLZqYVvI19B053awTdPRYntFqUFP6yZNO%2BtPR%2B8vaCmWKYRcCEBgT8PfjKIg77kvCY0RljKx98T43PUYO/W9sjNKpbO1/Jv1bCL9If1odu8fqnmgXHnkq44lexrbGcnx/nwioVAJDiTG0L2MsX2A/1vOIzF%2B0r9/X/sdHBF1Me82wS9BlBmg7neUjt93mHvv8fe47nvk89x1nP9898gUvdN/zwpe673/hxe4HXnixe%2BIFL3U/%2BMKL3JMueKl72osvdk9/ycWj/ce/8JdH6a5793vc17/xDa%2BGBF0%2B9Im/cx/4wo1ua%2BsZbt/le%2BYUdIm9uyR%2Brh5E8A77zMvoJSAQAiJePYkYhKBMJr8P3NQd7MbxbtPU9%2BsyGwkadhcVdImzrushxxVdKvpPr5bxbbPooEuDXALdB1ZS7b6%2B4cRq9keDLqFdYoymz02zaWh4LkMAAhCAwAoR8A4yM3FRB51uxSEeJnVBOZ%2B3NwdPcErHJoqt6/MTNjMxzugp%2BsbqrTq7ImW1dtzlJ%2BOBcNNenldT7vT1rvIV5lfHwahNmhzIdWln1b1Qtnp19tjIHbUXm7a27224HjTxZeY4BNmngja2nqKybAb2V4NAsPlR31zQ71Qce3Wbiyjt00fK9rYbuWaLiqeryd7QD%2Bt3z3hbvSeKZJRfTvv7INJnS/2baWeg1Se6b8pu%2B/WXkz93bSSHqbfKqKpj234pqiMnIbDrCYwDmbl7Ta7JD5emxsj%2BXq32XwFpH2VX7/u6nI39gJcxUU5DXx90iez58Xe%2Bn/V9nvTJ9c7Ul5GQz3%2BPbI4C%2BREpsqcIumTxNF4k6NKIaDkT/P3Jk%2B72O%2B%2Bc6fPVr33NK/Xat77VfdtTn%2Br%2Bl%2Bc8xz3mvLPcY87Z477jR/a4084%2B20kdvfx1DXqIENuH3f6Ndbc%2BcY57h/f6%2BmQFTEbSOde/MXoPS6b%2BxkvBuV8JdjTmSwULahl70H8lV7ooBrUdG3hZX3ejdhuliXP0wSSbL7tP0EWRs4UABCAwSAInj7sj8utY%2B4u9kUNqc7ICJqV1cKLV50mpHM3nQ5nTk8Vwrbi%2B4glbmNBN16tSm18R60RvU14CenJ6sq1ZktvgPE/Xl8xsLgQm3coxRY52u8pXnn8VV7p4p3KBE7tO1gbwKm3mnR8pB82kpIlNZ%2B%2BB0rKmhOPEshOwDqqK/aQEt31ggQPNlx9J6%2B0%2Bcs1WH0vnz2nf2WpbvSeKZNTH1Uy%2B36wzcnNq9YuVvnDf32PtH72Tkz93LUgmq3UORr%2Bz5bFifbk6Qn3sQWCXE9BxcqXf0jFywreofW9DfymPAxyNwduULc2h%2BSJj93b9QJ9jW2Mnqr/2xeZSdTeMF8cBLPNoRF9GGKPbvnyfPGpTfhSWaIJqPdNHBF2mmbQ5Q9ClDa0VTPv45z/fnXrmmVHJP/GZz7jfvuYad9/997utk/e7N33obvcHH/6w%2B6UPf9g9480fdt9%2B9nPcfQ884PM%2B7%2BUvH5Vlz/mL7EBgZQnMGvRaWYURHAIQgAAEFklAJ0NNE8q%2BZFp0fX3JTTkQgAAEILAQAiG4k/919UKEoRIIQGDXEtC%2BqCg4vmsp7aziBF268Sfo0o3fUueWx4b94dE73a9sOfd9z32uu%2B322yufM84/38v/8X9y7k9v/aL7/a373Hnv2nJ7/vBDbs%2Bv3%2Boe/ENnjvL8H1de6Q598IPunce/5L71zKf4fOxAYOUJmMeURV5Zs/LqoQAEIAABCOwkgfDLtMVMKBdd306ypW4IQAACEJiFgDo6275QeZa6yAMBCEAgTkDHrNVVevG0nN0pAgRdupEn6NKN31LnlqCLPILsJX/l3MN/9Jnu3P/zVZVPLOiyMQm6nP7yG9wPXvOX7sFPPnOU5/EveBFBl6VubYSblcDhDX3XjbzfhT8IQAACEIBAjwT8o1UW9GviRdfXIyqKggAEIACBxRAg6LIYztQCAQjkCEwe/bqoleA5UbiWJEDQJYmm6AJBlyJMq5nIBl1OferT3JMueGnlEwu6vHISdHncy292T/z1j45Wuki%2Bxzznpwi6rKYZIHWGwLZ530279%2BlkCuUSBCAAAQhAAAIQgAAEIACBJSVA0GVJGwaxILCbCEweh7uYleC7CWy/uhJ06caToEs3fkudW4Iur3vfJ92Lt5x77E/91GjVi6x80c8Hbr3V/f4b3%2Bj%2B7svOHbtn/HixqydBl%2Be9fMv9z894gfvE3/7tKP1vXn21%2B6PDH3Q3/TWPF1vqRkc4T2B7/7pbX99w%2Bw8fdtvb2/68c9tue/uw27%2Bx7tbWJqtc1vc7m8IkZhcCEIAABCAAAQhAAAIQgMBgCBB0GUxToggEIACBuRIg6NINL0GXbvyWOvcDX/2qe%2Bzz/o17yJnr7v4HHpiS9Zvf/KbbvO46d8pT1kcfeVfLQ89cdw/54TPdQ37ozFHARTN97etfd8/9tV8bvc/l81/6kp5mC4GlJSBBFx9U0eBKbEvAZWnbEMEgAAEIQAACEIAABCAAgX4JEHTplyelQQACEBgqAYIu3VqWoEs3fuSGAASWlsC22z68322sr7v1erBFzm3sd4crK2CWVhEEgwAEIAABCEAAAhCAAAQg0AsBgi69YKQQCEAAAoMnQNClWxMTdOnGj9wQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgcEQIOjSrSkJunTjR24IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAwGAIEHTp1pQEXbrxIzcEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAYDAECLp0a0qCLt34kRsCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgMBgCBF26NSVBl278yA0BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQGAwBgi7dmpKgSzd%2B5IYABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIDIYAQZduTUnQpRs/ckMAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEBkOAoEu3phx80EUMhA8MsAFsABvABrABbAAbwAawAWwAG8AGsAFsABvABrABbAAbwAawgTIb6BZ22N25Bx102d1Ni/YQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQgskgBBl0XSpi4IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQGS4Cgy2CbFsUgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBYJAGCLoukTV0QgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQgMlgBBl8E2LYpBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCwSAIEXRZJm7ogAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAYLAGCLivWtG95y1vc9ddf79785jePPn/yJ3/i3vQm%2BbzJvfGNb3QH5XPwoLvuuoPuDddd597whje4P5bPH/%2Bxe/3r/9hd%2B/rXu2uvvda97tpr3YHXvc4dOPA69%2Bbrr3f/eM89K0YCcSEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACy0WAoMtytUejNBJw%2Bf/bu7Mdx41zgeP9XHog3fUrnBNvo/Gs8m7H9lh2zm1uG9BjKEAuAgVwgCDH8pIFCY6nt3EdFMX6qlisjYuGkvwfoEcSRX5V9SuKatbXRb569Sr6c//qlZKf%2B1fqXv/oZdXze%2BfxXv3yyy9KJ3G%2B/ctf1O9%2B9z/qxx9/zJbPCggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBAWIOkSdjnapXqGi0663N3dVT%2B3d3eq%2Brm9U7e3d%2Brm9rb%2BuVM3N7f7n9tbdV09v6ker2/04426v7%2Bvki7//ve/1bfffqu%2B/uZ3JF6OtuepGAIIIIAAAggggAACCCCAAAIIIIAAAggggMCxC5B0OfYe8uq3T7r8MjDpopMwNunyn//8R/3zn/9Uf/7zn6vLkzHjxUPnJQIIIIAAAggggAACCCCAAAIIIIAAAggggAACBQIkXQqQjmkVfQ8XM9Pl97//vRry88c//rGa6fKvf/1L/eMf/6hmufzpT39SL75aqR%2B41NgxdTt1QQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDgBAZIuJ9BJbhW/%2BcYmXfxLi8UuL6YvLVb9XIcvL/b3v/9d/fTTT%2BqHH35Q3333ndLJmBcvXqgffuAeL649zxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSAmQdEnpHOF733zzTTXTJZRwuZX7uej7uth7uuSSLjrZ8v3331cJl7/97W/qr3/9q/rDH/6gvnzx4ggFqBICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAscpQNLlOPslWquvv/56n3S5vRt0aTF9WTJzebEnT56o0M/yvfei9eANBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaAqQdGl6HP2rlZN00ZcTMz83kVkuerme6XJzYy4tpl/fqGt9qbHrG/W9vqTY7vv6Z6e%2B%2B26n/ve7nfrxx5/U8yVJl6PfIaggAggggAACCCCAAAIIIIAAAggggAACCCCAwNEIkHQ5mq4oq8hqtZKZLvuEi76UmPtjLytmEi7u/VxeVvd1sUkX/dr%2BXKuXL6/Vzy%2Bv1d3dvXq%2BXJZVirUQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBAkXQ5sZ3gq69W6v7VqyrRoi8Rdogfk3R59nz6pMvVfKYuLi7UbH51Yj1FdRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQR%2BbQIkXU6sx1989ZUkXewMlzt1c%2BvMcNGXE5PLit3uLyV2U19WzLm0mJ3home72FkuJuny9Nnz8XSu5lXy5OJippbb0rBXan5xUW83V6RdSt1YDwEEEEAAAQQOJbDbrNVqsVCXl5f2Z7FQq81O7XoWulvX8VabdoTdTm1WC7VYeOWtNwcpb3j7dmq3WTXre7lQi9VabfoA7TZqtbhUi3V%2BY3F0%2B6b1fKEKQrX7IbakQ/10iOG%2BsYqMEXvkvjNV3a3VotUPzf15v38k%2BtiLEfqomOLSjxu1krqMvC%2BkC%2BbdQwhsVvY4LP3q7FuJZf33oUM0pEfMgrYv9HfTaq3WvQ6%2BPerEJggggMCvQaDj735REjmOr1TgDMDZzP3dxVtXYkS%2B%2B/T3wIBzBqcSPO0hQNKlB9qUm7x48aJOutSJlkiyZX8fFzfh0ky6NBMusaTLs/Ga2ivpohQzXcbrAiIhgAACCCCAwBCBnVq7iY/QYN7COxEqKs6eSPmDgFXyIlSOLFv1SGTEyhujfbkYOjlVhFKt5La/JOmyWUVOOMVLvz/eQHu3%2BuVsLtVlr/1HU40ROxejW981etlLmDQSlo2%2BuVSLVSSZ6MfosiM5lWkm5sbbF5wiePo6BXKDTd7%2B5e57PXeh19m6dFmd287AWxqUdxFAAIG8QLff/TLx5DieOn9wfz8L/N4iMXK/Awe2zVSPt4cLkHQZbvhaI3ypky73r9TNze1BLi2mL1dmZro8eTp90uW14v7KC9teLdV8NlOz8qlIncQOHb9TZVgZAQQQQACBjgJ2QN%2Bb1aJnopiZKnqAb7HuNgPFnCz525nlVcxmcsU94bu8TJ2oBRpp4nrlDW9f86RQz/wx//TsDjvTIX/St58N0jx57JR00QP3u130x9Sr72Of%2Bg33jdd2eOzx%2Bi5YS0mYLKq/uG/2zUZt1itn/7hUl6HRcIlh9ov8ftSui0047gff%2B8RoR2XJtALN/an%2B3MsxJ7TP7deZstZmxlvJcS1aT3Ms14lkPdPSO%2BZtNhu11p8t/48FvGN/ND5vnITAKPvSSbSUSiIwrUCf3/2yNZbjeOx3%2BebvZ8GZ2hKj/V2w8Wfnc/zPdsnYK5B0GVv0wPG%2B/PJLSbroxIu5xJie2WJ%2B9PLr6xt5rWe1XEcvK9ae5WKSLo%2BfPh2vNT1nuoxXASKlBbZqOdtfyu0wSZdDx0%2B3jncRQAABBBAYKlANbCdOVty/oA%2BNGYfLtydTzcE3Z3C44C//m9uGS9ovjZWn1OD2uSd9Nt9iK%2BMOmkeAdv7gu74sWf2X6iVtNMmHknVtxcqfDanfYN9ENQfHHqHvEtVTSvo%2BleSw%2B6ZOiLR2ESeGDCK3VkrWQu/k%2B0tRLcx%2BlapPJhZvH7eAs78EB6kmrb3d1zJYGDYAACAASURBVAcdq8z%2BXDJ7r74Ujsz0SXyXTUpD4R0FRtqXOpbK6gj8mgSG/O6XdZLjeDjpYn6vDf5eZIJLjPjvNP3OUUwBPA4RIOkyRG%2BCbb/44ku5p4tJspjHKgljkit1EqZPwkWSLk9IukzQxRMVeeikyKHjT8RGsQgggAACvxqBzTo3g8UmSooH0mRg0DvZKjiB0vByElU6gBYrTyk1rH124Cc4S6HeS6S%2Bwdk5ToxLc5kpuyxv2mXdPrutja9PfveXwbLLcvUb5puu77DYtg39%2By5dv7KkS7VDS5KtVRfZd/U9Ksw9lbzPTbIatp2LlZlZEx%2BgSIbizeMXcPYXki6mu%2BxnoDqGHR%2BMqSiPxQK2T3PfQcUhWREBBBwB%2Bxnr87ufEyj8VH7fb/8%2BY39nztzXUGIkfqeR78RMrHAtWTpAgKTLALwpNv38iy%2BqmS460aIvBXaIH5N0efT4yXhNZKbLeJYHiXTopMih4x8EhaAIIIAAAgh0EHBOzAr/Al/%2Bgs1bX060cskUOYlKnGg5LYiV56ySeJpon9QjMEPBjZhcT8df7JMZMlPGlpkfUOqyrlup0udD65crx9a/lXDIbZp9PxE72SdO4NL1nE3kqWyb20%2Bdevr7fiNGjwSnDEroS/WZy93l6iMt4MmpCRx1H9v9PH9cS8DLPt1lP7afnc6XwkxUhbemEhhpX5qq%2BpSLwNEL6M/YkN9NMw2U47iXdJHlBUkSWTf1XWCP/YO%2BdzLN4e22AEmXtslRL/n888/V/f39/vJh%2BrJhzmXEzIwXmd1iZr1c60uIhX6u1cuX19U9XHSixf25u7tT7z5%2BPJ5Fz6TL1Xx/yauL2VJtU7XZXqnlfKZm9SWyLi7qS2XN5mp5Fd/S3GfErK8fZ7ltljNVrS912qorXXZd5v69mZonyt03ZauulnM1m9XxpM4zNV9eJdvbp94hvq1pi1t37/n8Sim1Xdr2VQtC0ZRS0s8XSq9WHD8SjsUIIIAAAgicjkDXwQ9zAtQ%2BSZLkiD/w3MIwMTLJjmo7s267vFbY4IJE%2B%2BSEzztpbMUxdSg4iay2TZSZiO3lsFprjregS/1ypaZjberZHXqGTfd/idgH6zunlsUD4LaerQFhL4Z8RoKzppyyq6c2bjXY4MXy1%2Bb1GQh07GNzXwz9l8zmZ7FYVfdKaWlI7Mj9h8wG8tnaH58lme6UYcoyj50%2B3hK/2zHd1iO93W63UeuVuRRfgYtpt/9o4nj3lmn7ep9TP468tuuFEtTSPvP9acp33PczFSWgnmbXvrfUYn//Nnet2PNO%2B08dpFVPXQffO1IH2dZpk9mHzGOnfSnWMJYjgEBAwB6DBicw5Dju/P5c%2Bh1jaiYxEsd0JybHBgP3eh5Jurwe59FK%2BW2VdHkl92sJJlp0smVAwkUnX2510uXRKSRd9gkPN2nSeh5MEtiZF631TdJBkirN7pNEgn5/e6XmZv3AY/T%2BKG4SI7DdxcVc6VxH%2B1//erdjdUuKSLsv9gmVdjzHojZ3t4k5B7unHZwlCCCAAAIIHLmATSiUnNDIoIkZGHJaJwPKgfec1fRFwdSqHnTJnfilymvGjL2yZfntK49tT1RDg2Xtku36ufa5Fn792nHHWtKlfrky47728lx64DNxUh0tIh77cH3nVEZO9nN1t56t/cOPIa8LEo6ybl2%2B/9qpKk/PRKC4j519LjaAHTgOy%2BcmdP%2BhitB%2B5sy%2B7G5jBsb9x07HrpKBtlB3ik0s%2Bb2rki1%2B3VqvF3rWWKgAs2yfRGht5zo3Gmz7In28t%2BsZW1OifhRn3W9OW9v1MIOcG7XyEkLuuulEt1MXt13u88D%2B066ns7%2B429bPfQ9pY2BdU/cGrQvEcwQQGChgP/f%2BZ7NzYDmOO8cj87mOHDtaZUiM2O9Y%2BlhcJ85LY7YKYUFfAZIufeUm2u6z3/52P9Pl5uYglxbTlyv7%2BeeXVdLl4aNH47VSZkDM1DI%2B8aRVXm6mi7yvZ6jMl6oxuWS7VduruZot/fSFm7jYz0ixVapnn5hESCAjIImE2VzN9cya2VxdbZ0IV86skItQe53kRLWt22xd56Wa6%2BXu4ur5sHq3wjUW2NjRRJGy64RmHolLMGFkt43Hb1SIFwgggAACCJyUgB0EiZ30uM2xAyyhgZHiWHKiFRs8M2WmyzNrpR5TdZKTuVBjvKCybtGJX5cTW9tGM%2BhkHtt/Ue1VqvfLLvVLF5Ly1VsOmemSii39MXrfOe2Vgc/MZ0PWC%2BzP8p6NIXXP7EuynmljIJZTW56eg0BRH9vPr05mrjY7ZXMI3swHs%2B%2BIjbNtYP%2BznzkzkCYbVrMq1vUg/6ABOzn%2B28%2BEW0r8uXOsTLXL3LvKoii181wSM83kc1fFWTcTNLud2m1WarF2Z%2B5Z07SLXS%2BddKln6Szcsr1E0Gqt9n2xUKu10/87NxET83Xq0Xn/cZNDq33Sp0piWWw9e2ZhBl%2BjyXZbh7RZfG/gHQQQ6Cow4udOjuP6u8LGvdTHg9JqSYz2sUrPWLRJ5Q4xS8tmvawASZcs0XGt8NlnNulSzWbxZrVUlxsLXkrMXF4sfkmx6vJiP79U/1cnXRbvHnfSxQ7y65kXNumR6zG7nU6WRNZOJIns9jrhErnsmTuTxU/cJGJHalMttuX2q3cqtnISKsmkiNOuxnrOcr%2B5%2B3JJuqT9eRcBBBBA4KQFZIAvMFgcapicIEVOgJx4rcssSTzn5EwPaqVuipwrT2JGnjj1CZUjg2utAbx2PFk3MFDZXtu2MVRuY32njibZ0nrM/mV2I2LBiw71S0Vz6p5tZypO6L1MbOmP0fvOqYzUoT0gYNeylpehgdxQjNAyG3D/LLROaJm/Ha9PW6CgjxuJETvW3Wy3HDsD%2B66U4R1/neXhj5Xd1wd93lN1a7bCe2XL95MW1iQzg8xpox9DF9aME8P1quUMOKZd4vX3yw7VTa8jx706qRHsp%2BI2Jmb8JPrINYp%2Bz2fqoC%2BLNkoCz%2B8KXiOAQEJgxM%2BdHCNWamVmo4R%2BB0rURkkMexlI//ff9iUVUwF5b0wBki5jar6GWJ9%2B9ln7ni7m3i7JZItOumQSLi%2Bvq4SLJF0evjtei3omGmQmSyu54cwWCY/yR%2Bput0tvFk8S2ORH7DJbumi7fSsx08tieL0jIPViW99GMiWwkW2/mY1jt72Iotp1cvEDRbIIAQQQQACB4xVwB0VGTCQ0B2T29xbY6b8ONn8h7F0OJT5INfDkMNs%2BGz82wOV2ngx2jWhl4otPPca3t1qr1WIh92kIDuibAJ0fbdvj/pmgWd/M9qm3s7Ft/cfvO6diUo/AwLWq/%2BLd2Z%2BDlsEY%2BfrL58jd34KxnPry9PQFsn1sZ3sEB9xFwO5jof1S9i8ZJLPrxz9Tdp1QTCk690QG2kKfq9TGtvxmHa1JSb3abTdl2jjN%2BOb92KOtV7p8u14ovq1XwkX2j0sVTXi4yRn3%2BFFV37ax7/5j65lKcDltbdVBV8S%2BnzaLmbMcAQS6C4z4uZPjuJMwCX7WE7UMxZBZcm7cRII4EZ63hgmQdBnm99q3/uTTTyXpoi8Fdogfk3R58PDheO3rlWjQ92W/8G5aX1epZzx7o3eTMIg3Ucr2EgntpEM4hqznJ4ycWSE6IROdbeOGlfb2r7cbrv28S1LErquTLPoSbvv7taTqZrch6dLWZwkCCCCAwGkKVJdHMSc2pSdJMtiTGBCqOLzLoJhynEd9OZzsX7kWl9fug7L22TqEBsD8qIdMuvhlua/dAa7xBqds2/vELPN1W1H%2BvCy2rf/4fefUVfZB5%2BTf2Y/dv8iMOkoM73Mjgw3e8qr4yMBoLJZTZZ6euECuj2W/icw2dJovx6zg6HrzM6Q/d/v9ORXXbhPd353yo0%2BlrNC%2BH92qcS%2Bwxue%2Bazwx9pIGXeNIVUtd7HqN%2Btdx7LE%2B1Qf22JDqA%2Bl7//td2pgqY18hieHtP2X1dGYN%2BXWowluLVDuEmCcIIDCCwIifO/dY4hxTU8ngVgMkxkKt9WUyzR9oVX%2BktVHr9cq5VKF3vG4FY8HYAiRdxhY9cLxPPvlU3d3fq5fZWS31zJZ6dsvLl9equnxY7LG%2BrJhOuEjSZXG8SRdJaATvHxLvBLtdncwx925JPcaSLn4yxStWygqsJ%2B/V5c68%2B8J4oZS/fuym9I3lXr39mM3XHZMibuKobkO6uI7xm5XjFQIIIIAAAkcm0EyIdJm2HxuAiTVQX9e9OVPjUul7lOxvYGwHjrzxHAnXtbz9ht3a16WMLuuO%2B1e89iS508msSIae2JjdBry6%2BYZKji/rFrtLf3RZt1E/dyAhlmxZufddaGy9fyEx/AHmeB/IoKY/WBmNFSiXRacpkOlj2Tci%2B6ObCJTnsYOslGWTirFV6505nywvUXcH2kqv4KXjOvV1j1vWJJ9I2Fcv/P3TPY5pbPyzbNbYP9r1kkkX/3PfCBKue2MV9zJpXizbRtvnsp/E9ilvp5AYXuzSOvgWbl/6MXiNAAJjCthj0ODPnRzH6%2BOuvL5UoeNbsBWyjf/7kbu2rfO4M77dMngeEiDpElI54mUff/JJQdLlWi4llk226CSMl3AxSZd3HizGk5DZEKEby8eLkdkmXuJCkhDe8nik/TuyXSrJ4r/nZRMkRqbs3Hrbq6Waz/zkzyx4fxqJ5dct9dqrd9qme1JE%2BkbXIWPhXm6NmS7pnuBdBBBAAIFjF3BvSrn/q7LyGpuBntSJUXk0O3gWi9envO7tk8H4zOCRm0QpO5m0J4mDT2zdATS5FFAH6%2BCqferX3TdYdHBh99iH6zungjLIG/grTGe15FM3hjfALIOXjX41%2B753vw1dSCJWsg68eToCmT62%2B0z/QXMXQz5HesC9w3Fw0HGtaKDNrWX9XLZr/sWzmGTrb2KGP2Pd45h4pcdTu17oe6SsfFt3LxdiKlM9xmLJ8liCJbTcK0hiZLzT61mLQftSo9W8QACBtMCInzs5Httkt/t9UvS5lhixc4G6NfK92Dz2p9vKu0MFSLoMFXzN23/0sU26HOLSYjqmSbq8fQpJl74zXbJJgnjHSgIkE6N0PbW9Usv5TM3cBIoXuzhWvNqZdzomXVozXXLJtI7xM7XlbQQQQAABBCYRcE5Y8gNr7RqmB0/a62eXyImWPVlzt%2BlcXs/2STmNQW%2B3Jua5HegqOpEc%2B3r1GS9Ty/LHjifePX2L6tMz9uH6zqm11C0zIOBs0nqajBHYr1J9nYzVKpkFpyiQ6WPZ7zMD3kVNl7JMAie3n3c8bsQqIft4rrxmADug1/zeEJPscdzEs587N5/QPY6JV%2Bpi15s86TJg/xGnTIz0etai7DvVWPOIAAL9BUb83Mlx3D0e2/h6Bp17fA3WWWLkvgvsMZvjRVDyIAtJuhyE9XBBP/r443qmS3M2i57RUjSrxVxeLDC7xVxaTJIu7zwYryEjz3Sx92bJDfZ7TZB6pO4/4m3jvSxNgJSuZ8Nv1dV8Vt8f5UI1JqqMUG9bTuhZl6SIXVff00VmvHiJomYpdhtmujRleIUAAgggcCoCzsnKaqO8P7YvaIQ9icqeQBVE06vI4FkwYNfyBrSv9IRPBidzJ4YGwLZhjBNEGbwqHlQ09Yg9dqnfAN9Y8bJ8QOyD9Z1UbpyZJZl9R/q2GsDM9EsmllNznp6qQK6PZb93B7r6NNbuazoBIMfk5EC63WbQcU3aUHo8rb406nvOBGaAdY0XM%2B4aR9itSyiZIqs5yfjQes1jgd2q%2BcweM4Nfn/XK0VjSxv77TzR2s6IqvZ41G7QveWXyEgEEUgIjfu6ixxJ7jLq8XKQTLxIj911gY3K8SPXvuO%2BRdBnX8%2BDRPvzoI3V3d5%2B%2BP4tJrMQeMwkXk3R565iTLs5Mi06D%2BH23c3q2NJlSup4TWrmX4dIJDfk3Qr0lVvBJeVJE2mVmGRXVrTx%2BsHosRAABBBBAYGIBGUxLjdCk6ignRf0HaRrhYwNeZqWO5Q1rX9mJXHrwyFTcfRzxxNYdqEsOiLrl556X12%2BYb7oew2Ifqu%2BcOuf2VWfV6NNcDHn/Uq3W6/qmsZEBCFk38n60ErxxMgK5Ppb3A8mHDo2UY5pJ5BbFLT9uJKsix/jC/dipW/ia/mXHAlOnVtvtG3LT5m4De9YlOZPUbUfg%2B1jqlTzO27YGQpiWxBMeTh26tVFCx2PbVapn6fZYs7718IrjJQIIZAVG/NzJcTxwbuAcZ3TiZR37ay%2BJkVhHt0nWK5g9kzVghVIBki6lUkey3ocf2qTLoS8v9ubb74zXapmp0W1mSmoWhbx30TNmbrvtlZovncRHrSFJh%2BTMDqVK12si2%2BREI%2BmilJ1R0rPezXL8V/FyG2s6CZZmTsjM0In1RWH8RmG8QAABBBBA4FgEzABN5oQmUV0zMD7KwMjO1Cd%2Bo81u5Zl4/dsnA0OxE0Pn5DE1yNUkHO/E1tZvzJPN0voN9226uK%2BGx7Y2kf7v1XdOHWX7SHxn1ejTghhmn5cbWsd2tIJY0XrwxmkIFPSx3V8y%2B6U%2B3q437XZLGc1jSvbz5CaAY/tou7T2EhlAy9Rf7dRmvZJESGrwzpo029Qq3Gl76DvNxsnVrRm5k52%2Bb0rAT2IcMunizjSNfeeZpkX2n7J66omCi/3spGB77HdQyMJUgUcEEBhTwH7uQse/TiXJcTyQdNGB5H19%2BcrcOqnjrfldMRGnU8VZuVSApEup1JGs98GHH3af6VIws8W9tJiZ6fLmW2%2BP12o36XK1Vdtt4scpVRIrwQTHlZrLfVBmaja/Ututs/F2q66WczXzEydO4uDiYlYlVlrbmXusuJmFOnRpMiW2nl4%2Bmy/VlTZwqqsrby8vFkheDKy3ia2dQv/EWid1ruqabZfK8jmJk1Z/pN7bl5aPH6oVyxBAAAEEEDgCATnpWanNbqd2JT9utWWAKnVC5G6gB1pW1UCfLkv%2B7bzBs%2BAgTI8bhQ9tX1VB94Ruf8N0U%2B/dxsw8KLnJtNlKP5af2GqvxWq97x8nxE4PeC3qQavIIJ2zesenhfUbwXez2rdh4Q8yjhBbqUP0nUPZY/93tt4/LYkh6%2BhBhcRnTdZLrNOqAAtOSqCkj2Wd/f6iEyvu4Va/0J%2B7RfC4YT/77VkZqff2io2kxKY%2Bxu/WKpTbibrLZ39/vG1%2BL23UZrNW6/q4IYnI1OeiKkgfL7XH/kcfb1ombgIn9h3kHVOicfwGe32yNja6btWxfN9XC1NH/3hYff2lkhRG0x7zAiHMSumEh1fXbvtPLpkiVUjXwU/%2BGK%2Bu%2B5ItjmcIIJAVsMf4gydd3GOaPi6HjrmZ74K1e8y%2BHDa7M0vDCi0Bki4tkuNe8P4HpUmXl%2BrnHskWk3y5vbtTbxwk6XIh9yy5kIRJc5l7uTAZqG8N8tf9tL1S81lz%2B1bcUJKhkcCIb%2B/WxewZsWSKed88xtaT5ZH26/qHyq3i9q13Y7tAQkcHb6xjTQyfrXd%2B%2B2D9M/GNG48IIIAAAggcnYCc0NjBKDMoFXt0T8TkL1VTozteo2WbevDLL0cnGJx0TGNr2ba0vIHtk8Ibg1ABq9DJomwcelJ%2BYittjnhpv2rgL1RM72WF9Rvq23D1EgVDY5u2N8oYo%2B9M4GrEIH25L2fV6FOpn9f%2Bxga2P4IDE2bdolhmZR5PUqC0j2W9wD7vHEvc47n2sMebyP7oxPW3rTyd991je%2Bkhu4rR8bNffvxrJl7c%2BrnPs/EkSZKwDTTY2oa2097O5zy1ffL7ZoSky35HcGYQheq7XxbaB6SdyXo6%2B1psvTH2pWqH4j8EECgTsMeg0Ge7LEa9lhzHI7NYZDXn%2BOIf9ySGs47z/WWP2wu1il6jrFOtWbmDAEmXDljHsOr7H3wgM10OfXmx37z51nhNlpkudjC/lRypkxDugH026VLVcKu2V0s1n5lLXNVlzAKzWBotqmfC%2BEmbzHaSfIglguoyouttr9RSz8AJlNuardOor3nRr965mS5V9K12dPpoNldLPenF6T%2B3f0yNzKP0V%2BwSaLH4JgCPCCCAAAIIHKNA8QmNPeGxJ2JlgzutZu821V8pV39lLSdPC5nN0VpfFvQob1D7pOD6ifPX4abeC30T0F00SeRHsK87nNgaL/MX0E7Z%2BxkwNup4zwrrN4JvfqaL3ffsCXZ4md03fYkx%2B86JLYOCkQFqZ9Xo09IYtbU/JtGIWxqrsREvTkqgUx/XMwgDx47W7AWN4Hye458lvZr5/EX2%2B926MavkcrGKX7M/hO/UI/iZXyzUQsfsdezVE0t0/eqZPuZ4elnyHeRWdidxGnXU3wn%2BzCJnM1O2u409jtvjbuiSWmXJjLLvybJYHfefup1lsQuSLjre0H3JsecpAgjkBOwxKPUdkItSvS/H8XTSxZ35rY%2BLOukt/ySG%2Bc7xHvVx3J%2B1KBvz5NACJF0OLTxy/Pfe10mXu0GzWMxsltSjnukyatJlZAfCIYAAAggggAACJyFgToZif6U6diNed3lj1594CCCAAAIIIIAAAggggMCJC5B0ObEOXL7/vtIJkVTCZIz3dBn//cabJ6ZDdRFAAAEEEEAAgWMSGPGv4Yqa9brLK6oUKyGAAAIIIIAAAggggAACvyoBki4n1t3L996rki46KXLon//6zRsnpkN1EUAAAQQQQACBIxKQS9zkLhswUp1fd3kjVZswCCCAAAIIIIAAAggggMA5CZB0ObHefL58Tz1fLtWz50v19Nlz9fTZM/Xk6TP1%2BOlT9fjJU/Xo8RP17uPH6t1Hj9XDR4/U4t1HavHwXfXg4UP1YPFQvfNgod7WP%2B88UG%2B980C9%2BfY76s233lZvvPV2dTkxfUkxPcNFJ1xIupzYzkF1EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCYVIOkyKT%2BFI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAwLkIkHQ5l56kHQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIDCpAEmXSfkpHAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBM5FgKTLufQk7UAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFJBUi6TMpP4QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHAuAiRdzqUnaQcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghMKkDSZVJ%2BCkcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFzESDpci49STsQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgUgGSLpPyUzgCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiciwBJl3PpSdqBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACkwqQdJmUn8IRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDgXARIupxLT9IOBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQmFSApMuk/BSOAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC5yJA0uVcepJ2IIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwKQCJF0m5adwBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOBcBki7n0pO0AwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCYVIOkyKT%2BFI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAwLkIkHQ5l56kHQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIDCpAEmXSfkpHAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBM5FgKTLufQk7UAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFJBUi6TMpP4QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHAuAiRdzqUnaQcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghMKkDSZVJ%2BCkcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFzESDpci49STsQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgUgGSLpPyUzgCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiciwBJl3PpSdqBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACkwqQdJmUn8IRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDgXARIupxLT9IOBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQmFSApMuk/BSOAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC5yJA0uVcepJ2IIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwKQCJF0m5adwBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOBcBki7n0pO0AwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCYVIOkyKT%2BFI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAwLkIkHQ5l56kHQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIDCpAEmXSfkpHAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBM5FgKTLufQk7UAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFJBUi6TMpP4QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHAuAiRdzqUnaQcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghMKkDSZVJ%2BCkcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFzESDpci49STsQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgUgGSLpPyUzgCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiciwBJl3PpSdqBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACkwqQdJmUn8IRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDgXARIupxLT9IOBBBAAAEEEEAAAQQQQAABBBBAIgDVugAAAehJREFUAAEEEEAAAQQQmFSApMuk/BSOAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC5yJA0uVcepJ2IIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwKQCJF0m5adwBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOBcBki7n0pO0AwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCYVIOkyKT%2BFI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAwLkIkHQ5l56kHQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIDCpAEmXSfkpHAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBM5FgKTLufQk7UAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFJBUi6TMpP4QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHAuAiRdzqUnaQcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghMKkDSZVJ%2BCkcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFzESDpci49STsQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgUgGSLpPyUzgCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgici8D/A75PHsBYm1ckAAAAAElFTkSuQmCC?action=content||width="100%"}} |
{{attachment:vierMriFolder.JPG||height="130",width="580"}} |
Line 46: | Line 55: |
{{/brainstorm/data%3Aimage/png%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAABjkAAAGcCAYAAACLC8IvAAAgAElEQVR4Aey9ebMcx3XoiU/g//0ZNBMzEY5xxCBmIp7jjf%2BYCIbt57HDi/Qs2pJgj2RSnjdvws%2ByKenZoq8WkwK106YkWJthkZJIgrgkSAoASREEF5C6JEACuMRCYrsAQRI7QIDAmcjqPplZ2ZlZVd1Vfavv/XVER225nPPLzNOZ53RVrRE%2BEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQGAGCayZQZkRGQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQgIQQ46AQQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAjNJgCDHTDYbQkMAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIECQgz4AAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIDATBIgyDGTzYbQEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIEOSgD0AAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIDCTBAhyzGSzITQEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIEOegDEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIzCQBghwz2WwIDQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAEEO%2BgAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIzSYAgx0w2G0JDAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCBAkIM%2BAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAwEwSIMgxk82G0BCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCBDkoA9AAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAwkwQIcsxksyE0BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACBDnoAxCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCMwkAYIcM9lsCA0BCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgABBDvoABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACM0mAIMdMNhtCQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgQJCDPgABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgMBMEiDIMZPNhtAQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQgQ5KAPQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgMJMECHLMZLMhNAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAgQ56AMQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQjMJAGCHDPZbAgNAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAAQQ76AAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAjNJgCDHTDYbQkOgGwI333yzrFmzRn7jN35DLl261E0llAoBCEBgSgTuuOOOwqb96q/%2Bqpw%2BfXpKtS5/NdPW2/xemN8N8/th6uYDAQhAAAIQgAAEIAABCEAAAhCYJoFokGPnzp3y9ttvT1OOmarrk5/8ZLGQN9uV%2BlkNOs5y23XVPgQ5ZrlXIHtIgN%2BykMjqO562s78vhKet9ywGObAPfemtyAEBCEAAAhCAAAQgAAEIQGByAiNBju3bt8tnP/tZufPOO6ce6HjooYeK4IH5J2Ds%2B4EPfEC%2B/OUvL%2Bs/zM0/Qc0/Qo180/hn6ObNm%2BU3f/M35Vd%2B5VdKTNauXSv33ntvJyymrWPYjav6Qaxv6DmTd6V/umyfpkEO49hK9VHTJqbfal9NtUsqv%2BaL3VHSpI%2B02SfGkTWl96yd379/v/z6r/96439pHz16VExQzthvHadma%2Bza1q1bO8PQ598yo7/p33/1V39VjJ8UBHVUm3G0sLCQSmbP%2B7ahzr/pTZn62%2BKn1/FVt14rQGLHr8fvA7H9tu8iU4Zd/V43GRcqS0xvPdcWc62rK73Dpp61IAf2ofpuG3/cdmkfwr7EMQQgAAEIQAACEIAABCAAgXEIlIIcuugzQY7lCHSoY0UX%2B6ltW06AcYCZPF39i96XxywujUMxxUDPG6d0F59p6JiSu24/UAb%2Btk2Hdkq%2BPpzvqn3qBjmMQ8sEHNVB6rdBbN93kCi/Sfp4kz7SRp%2BYRFbVd5a3JqCqbR1ry5Ru3/rWt2y%2Buv0iVVaT87PyW6ZMDNtYAD/lZEyx8MdFnWCBOsLD31QtJzyfqrfqvK%2BH6pza1pG7qj7/uurYhbO/6bhQ%2B5rS3Zxvi3mXevt8dX%2BWghzYh3qPpNQ%2BFPbJtu2D9iG2EIAABCAAAQhAAAIQgAAEJiFggxw7duwoAhsa4NDtNO/o8BdO5h/Ti4uL9nvfffcV//xV50DbjpBJILad13cImcXlxz72Mdm2bVuJhTlnWHQV5KjSSf/RbhbBXXz8ttd9U6fhYb5h/9A0XcjSta5dyDxumeqEy40v35mlTjnTH%2Bfn520fNe1hjo3j1vxjP%2Bwnk/bxnK3QvqDbcVlovkll1XL6sG3al036MNgatmVKL3WQmT5i%2BofhqB9zd4fpGyYI0van779lOjZuv/32kbtbwnHnj7XwWoybjl8dlz7zXPqwbH98VZURKzc8548hExjQsRnbmr7R5kf7YZtBjnHHhbaP2cZ013Nt6N%2BF3jm5/L5a10bkyuvqGvZhcKd0GLiI8db%2B2rV9iNXNOQhAAAIQgAAEIAABCEAAAk0J2CCHeQeHCWhocMPfTivQUcexogt348Qx6Vfax3cUGKeMeRRG6mOuGUfhtD%2B%2BjNN0ZqijrM7ivC0my6VrW/I3LSfl1NByzONwfKe3uaPEMGry8ZmO28fr2IomMqXStiFrquxpn/d1qRq34R0YGlw0drcqr9FL26du%2BjZZzMpvmeqsjzsyrMw3dCjqmKxy0vuPqtKycr%2BRfnpTh//R9mvL1qrtNnLlZPJlaGtf5wxV/OrUN%2Bm40LasM4bqyJNL06beuXr0WhP7onmWY4t9cI%2BDzY3FadqH5egH1AkBCEAAAhCAAAQgAAEIrDwCNshhVFvuxV8dx4rvLJmGo2DaTT4L%2Bi2XM0PZtOV4q9O2y6VrHdm6SKNOuNDRqnXpdeOsNP/IHuej7WjKGHcM17EV48gW5mlD1rDM5Tqu25f9dKaNTCDL/DaYPlGnzfz8ofN8WrrPwm%2BZz8JnFjLWvm7O55yS2leNM/%2Bmm26qvNNP08fK1TrbsrW5unwOXey35ewP22iScTGu3WvCpy2969bp85mGfnXliqXDPvTLPsTaiHMQgAAEIAABCEAAAhCAAASaEigFOUzm5Vz81XGs%2BP8u6/tCumljmPTL6QyqK%2B9yOTOUTVuOtzr6LpeudWTrIo0GMWJBDh2foRO2qRzajjHnat2yVJau%2B0IbstbVqet0dfuySffbv/3bRXBDHx1UN6/RQdumjX/OT8Kk779loW7%2Bb5s//vzzuaCROrVN3s997nNFkCPXBpo%2BlkbbsK3xtZzjKKdn2Aa540nHRZMxlJOj7rW29K5b37T1qytXKh32YY3Exr7yyvWftu2D1skWAhCAAAQgAAEIQAACEIDAJARGghymsOVa/NVZOFU5S9RJq84g/8WgvuPI6GkW5fqMeuNw1e8HPvCB6EtgFbTWEZZnruvCUK%2BZOsw/Po2zyC8/9S94Xz/VQeuts63raPDTxeqJ6ai6qR6xrWnD2CfG2byrwZyv%2B1E2dRxvvn5G7tTHT%2BdzmERXI6d5B4Hf5oZVHX2Vu8qS6r%2BaTvtZqJ/RK8Z83L7tc8o5RkI5YsfajoaJ6hlLlztXx1bk8te91oasfl2xNqnqF9oXfe6mX5i21DFo%2Bprpc7HH22l%2BTRvbpsatyu63f248mfTaN8dtW62zjW2ff8ti%2BmlbhTZOmebGu7lm2taUUTU%2B/PaMlVmVPyZ77pw/jqr6Wq6c5Rg/OXl8jlXjwg9WTcIgJ49/TfvSuHbDL0v3U/yN3ali0YU8Kte4W%2BzDr5TelaQc/bachn3QetlCAAIQgAAEIAABCEAAAhCYhEA0yGEKXI7FX5VjxSy8qpw9et1stTx16vmLNbMoN4t/vRbb%2Bul9yFpH7Lou5M0149jJ1ZFyimj56rDy667a9xenqfJNGX46U1/4URl8HVW3GCs9Fzpv/Ho0Tbj16wjl8I/VURY6AP00uu/XOw6HcXU1juZQv/DYvNMi5ow2sit3s831X00XY9dF31b2RpccT%2BVftVX5xy1P2dTpC1WyVF2fVFZTvt8fw/6gx7G2NHm1LxpbcuTIEfvYKM0XbsMAquYP0/nH4bgNmfjy59p/2o7cUM7YcR9/y2JymnOpcaZtmOrvmk%2Bv%2B%2B0Qa6%2Bq622PL5XP9LmqvhZj4/c/v9/6%2B22MH8MvHD8xefScL1eMs6YzW5/5OAz8sursa5%2BpYzeq9Day%2B%2B9i8rnrvuFm2sAcx1g0kceU0aQd6vBIpcE%2BjP4JxO%2BrsbZs2z6k2obzEIAABCAAAQhAAAIQgAAEmhBIBjlMIYuLi9EXkZuXkt9zzz1N6qmVNrdwMk4SXWSbRbtZhMU%2B6pA0zyQ36cxjO4wjIvyo08WUaf6dqGnMVstILdb1esypogt5U65%2BTV36MXUZh4IpWx1Sek23/gLTpDPlpJzimke3dZ0ufjqjT/jJ6ejnjS2AtSw/nTpRzDnzMVvz0nRlEZNBy9GttlmKm6bT8nMOF03ryxiTwb9eV1fTZubuHX3Uj6nL7Pv6pvqwcq/qv5ou1geVU5t9Ozc2lWWT7SR93NTTtjw52SeV1e9D44wDtSmmz5h%2BEZZhZK9jV3w5cn05xqJuXu17OkZNv4/dyWbGgilzWp8%2B/ZbldPb7mm%2BPlGvqN0nHg29XcjZC02s7hTJVXQ/TVx378puym3z8vhf2fXPNt6s%2BM62jrfGj5flbX7aqMeW3rWlH/1t1N5dfZ939tvT2dTT8w7FrbI/5rfH1ibFoS566%2BjdJh30o2%2BKq8V91vQl70kIAAhCAAAQgAAEIQAACEGiLQDLIsZz/bvMXy%2BG%2BcZiZRXfqo44dk8%2BkTX1M0MAszmMff1EfcyJrHbFrupA39ceum/p8h0/MKWPSGPlCx4E5NnlzH1/2mKNB8/rpYjLkdPTz5upQFsbxlgrSNFksK7eUY051M9u6MvrpYhz863V0Ne2ec%2BKpDiZdrD7lXtV/NV2sj3XRt7Ut67D32yG3P24fN2VqvzGcct8Y45xMqWuTyKrsxh0Hmt/omePvO1Fj/aJuX44xqJtX28Xoum3bNhvEjLWRsWdG5q4/y/lblmuvmN4%2BZ7/vps5rGWoP/Dzab/zAh6bPXTNptB2byq/lh1vf7sX6gp6L1efLOs7viOafdPyEOpljv11MPblPHQZmTKR0zJUdu9aW3lpOrG20Xp%2BD4RxjoeV00Q4qxzhb7MPon4a0rWK2wzBu2z6M027kgQAEIAABCEAAAhCAAAQgEBKIBjmWY9FnBNOFkzo8UtucI0CdPbkFeQghdpxb5GkdMUei5jOyG31iH98hECvDz2Me2WB08Vnk9PfLNrKkPn463zGm6XM6%2BnlTdfgO1xQHU1edslQmdRLVadu65frpYhz863V0TaVRHczWpDHtGXMgKPcqHTVdVf/x69X9OvWH5ebyaLnjbpv2cVNPXVsRa9Nx5TT5msraxjhQ9qbPmP3cR9PG%2Bk%2Bdvpwqu27esF2MHIaZyW8%2BemeH2rOwn6XqH/f8cv%2BWxdohp4vPOey72rah3Uj1MbWXhrVvg3N1qGzajk3l1/zh1pdF2z62DetL6RaW7%2BsUjhHlZuoLr4XlaNpQjjCdHufq1TT%2B1twxYL56l5/ZN3%2B2MHdyKI%2Bwff38TfZVl0n09vlXsfPbOJa2DXma6F8nLfZhMLdcbvtQp61IAwEIQAACEIAABCAAAQhAoIrASJBjuRZ9RlDfsWIW/uoQMFvzr%2BDbb7%2B95PD3F2aq6CTOXy3DbHVBHnM45OrI5YuVX8fJZxwpoXPVOGHMufBT1%2BnipwudaabMnI5%2B3pgzw%2BTXtozxC2XWumJy%2BGnViVLHAVVHRlO2ny5Wv3%2B9Stc6cpk6VQ/jfAr7sLKo6hd10/n8dD/XR1Pl5vJouZNsDee6fdzUo/3LMA9thW83TLltf5rIqnJOMg6asM/1rTp9OcWqbl7V1/Tt3HhQnWJjICVD0/N9%2BS0zbVL34zuVQ3vkszX7%2BtHzYR9LtVmuj4Rl5tpQ09bZ%2BnWace6P0XDfLy%2Blm59G99V2hdy0r4V8NJ%2B/9eX0Gftp/P0UYz9N3X2Vs05Qok6ZWt4keiv/Ov3A77um7vDThjxhmZMcYx8uRd%2BhUmcMNOkXk7QReSEAAQhAAAIQgAAEIAABCDQhUApyLOeizwhdZ%2BHkOxVii/eUoyMFxZRnAih33323rFu3rvhH5Qc%2B8IHsvyq1jpgjWhfysWu%2BDHXT%2BXmMrP7zx2POEJ9PzNGg5fnpQqeQSZPT0c%2BbqkP1MzLW/cbkUHnNVhffdRwudWQ0ZfrpYvX716t0jfVHX37d951BoSNNucdk0fxmq%2Bly/czI3lbf1vasw96Xs%2Bm%2Bkbmqj5sy69iKpnU3TV9HVuVWdwyYdGHbaxl1%2Bpfft8L%2BWqcvpxjUzavtYvQI6/fL9uUM9fXTjbs/C79lMd3UxsX4%2Bcx8tto/YrYgdk3bKDeW66SJyZ865%2Btlyq77Ufn7MH5iMtcdF7G84Tm/rFhbhumrjpXdJHajSRm%2B/CZf%2BGlSVqqvh2WOe4x9GJDTNvH7W52xXyfNuG1DPghAAAIQgAAEIAABCEAAAuMSsEGO5V70GQXqLpxyDhN1/lY5zsyC/GMf%2B1ilAz7mINA6/IWhNkBs0ajX/G3ddH4e3TfP7DZyGcdP6KiqcjRoGX66GKucjn5eo0fso/pN4pwKy9V2D3UO05njOjKG6WIc6pSjusb6Q0y2nANHucdk8cvSdLE6jcxt920dm6Y9zX7Xn1wfN3WrPHX6wnLKqn1jknGgZcRsUahbrm/V6ctheXpcN2%2BTdsn1Ya13nO0s/ZaF%2Bim/1DgLmVW1i5bnj5OwjFAGcxzLF0tX95za7pReqXK07/dh/MRkrOIfy5M7p/rWGeu5csy1JmWl7IaWEfudCeuvYqFl1dEtJU9Y5zjH2AdHLTbOl8M%2BOInYgwAEIAABCEAAAhCAAAQgMD4BG%2BTYsWOHfPaznx353nnnnWIWhdP4xBZcsXpzC2BdoJlt6uPnN84T4xC%2B7777ijsF9FnZuQW51hFb%2BGu%2B2DVfnrrp/Dz%2BvrIy8puy9FPlaIili7HK6Vinjkn1Uzn9rTrKfIedf93fryOjSe%2Bni3Hwr/uc/bpU1zrOG5PP73%2BmHf2Pco/JEksX9jO/7Db7tl9ulWy%2BnJPsp/q4KVOv1ekLk8hQN6/KE45H7RthO9Ut16TTMur0L7%2Bdwr5Vpy%2Bn5Kqbt8kY1b4%2BCZuYvLP0WxbKr0xSba39TPt9Fe%2BwP9Rtx7CeUM6mxyqnGR9hv8yVpX1/kj6iZaSY%2BvWHvPxrsf26PGN5Y%2BeUex1ZY/n9c23o3aSMKhZNymraDr7eVfvYB0co5FzVhppT%2B6naIT3PFgIQgAAEIAABCEAAAhCAwHISsEEOI8T27dtLQY5pBjhM/XUXTv7CzCyc/Y86iXKOWH%2Bxbf4xHvv4aUx9/kfriDleNF/sml9G3XR%2BHn8/xcBfpOYYVKXL6ejnNXrEPtqWbThrtHx1lNVZWPsyTsLBL6dK1zpyGV1yeij3nMymDE0X9jPtV4Z7231b62zqqNT2a7pN9XFTjvavusyb1t00fUpWlXOSceC3aWiLQjm1vhiXOn05LE%2BP6%2Bb1ORhZch/tT1V9PVdG6tqs/Jb58mvbhYEyP43aDh2DmifXv3zOmj/WP/x6tNyqdH6e3L7Wq3Ln0vrXVI6cfn762H5b4ydWdt1xEcsbO9dE1lh%2B/1yTspRz2N6p8349uu%2BPfVN3%2BGlDnrDMcY%2BxD45cH%2ByDk4Y9CEAAAhCAAAQgAAEIQAAC4xMoBTlMMbr4m3aAw9Rdd0Gt6WIOE3/BlsLSJE3MuaL5QwezqU8X8rFrvjx10/l5/H3faeQ7FHynS04GP7/RJ/zkdPTr8Ov2y/DLT6Xx09fZ1zJDR0wsry/jJBz8clJ6VDl3QvlMOabv5vpWrE38clLto%2Bdz%2BTVNrv4YM%2BWvsqeCKL6ck%2Bz79YXs1QbU6QuTyFA3b0rW1Pm65Zp02l9i9i4sR9s21n51%2BnJYnh43yasy5Ppg0zGjcjTZzsJvmerj95PYuNR0fjsYvnVYa/8x5X7ve99L2h6tw2zbHl%2B%2Bfqbsuh8/X2gD6pah%2Bk86fmL1%2Be0xrnxarl9WbPxqurrbNvRuwl/7jOEcY9GGPHV1r5MO%2BzCgpO2ynPahTnuRBgIQgAAEIAABCEAAAhCAQBWBkSCHybBz586pPaLKF1AXyTnHpe8cizmD6jh9NE3KkeAv7HN1xPLrgjF2zdc1lW7r1q3Fi5eNwyP3UR1irLTs2DVTpu9MMQ4JU1b40fJjevj5Y3m1LC0jJYemM85y87Lpqo%2B2S1V5Wk4bHJrqWuVIUx1SjiBlluNq9NN0YfukzisTv/6mfduUoUyN/KYd7r33Xi06uTVpvvWtb9nrbfTxOrbCVjjBThuyaptU9dvUOPCZh%2B3tq6ZMUn2rbl/2y9R9P6%2BRJ/fx5TD7sY/qFOuDsfTjnuvzb5nRyXA1ts/0DR1TZozmPsruAx/4gM2X4mzK0TFv6jB5TD1V9kXbsKrP5uT0r6kMpu6crH4e3e/L%2BFF5/G2TceHni%2B1ru47DqKq8ce2Gr1%2BuLxjbZcaykd18YzbC129ceWJ6TnIO%2B9AP%2BzBJG5IXAhCAAAQgAAEIQAACEICAEogGOfTitLe%2BY2Xz5s2yuLhov8ZJcvvtt1unTmohrQ6RnBPHX2x/8pOfLBxNRlezoDcOWbOYX7t2bbFYjznhtI7YQl3Ljl3zeabSKQOj32/%2B5m/ad4Uoi7vvvlt%2B/dd/3ToTYnr6DiWji2GpH%2BOMMPnN%2BZzDK6ejKUuv%2B%2BWbeo1TWD%2BhHMaZp%2B88MWnMvuFvyojpoeXoVssz6c1%2B1UfTG5a%2BnCZfXQ4mbR1dTfDNbxejV6ir78xM9Q%2Btq4qHpgvL0X5ldG67bytvvw5Tj%2BlHRjfDW/vptm3bSuPV5NFPG31cy9B21XpjWzOux/1oPW2Ox6bjIORt%2Bpk/po1%2Bn/vc56xNCPuEr7v2G%2BVmrpl288etn173fWen35Z6PdxqPYabkU3bQMe8OW%2B%2BdcoKy56FY%2B03ytnvl4a3eQeUeReUcjBbk9Zcq/qYNCat5q3K57ed5jHy5T6%2B/HVkypVlrvkyV9UdluXnNbou5/gJZfPZVvVlE%2Bg1bW700fGgbMxvvbZNle0PZUgdt2U3tC9oHzVzJJXfbHXOZOyS/gbGWLQlT0rfWTqvTE1/js11V5t9mKW2Q1YIQAACEIAABCAAAQhAoL8Eehnk0MV%2BamsWhv4/w3286lzLOQp8x0SsDuMc1gX5cgY5YrL553wnts/A7Kv8fnrdN/zMPxiNM9Sci7FSjimHqe940nLNNnRgpdL5ecx%2BzCkS6qRlGfnNfp3PpBxMHVpvKHOoaxjoCNPrca7dlHusTXx9NV3YPl32bb9%2B45hRh5bqldqa9vKd6OrgSaX3z6dYNSmjiqWvV7jfpJ6UrKbMVB/ydTX7sXGgfdjYIhM8MjzDfHps2sT0w9QnJUfYl8P8fr%2BKyZhLr7KF2zrlhOXOynGTfmO45PpOqLN/N6PJG9qAML05Vnth0texnyp/nbSx%2BsJzfr%2Br6mthXnPs5w/7kX8c61Ntjp9QtibjQuXw5Q33m/SDUJbwWOtrw25oICOUV4%2BN3Tly5IidU0y7HULd%2B36s40v5VW2b9ItZtA99by/kgwAEIAABCEAAAhCAAARmg8BMBTnMP8bNYs//h3yIWZ05VY5N45zw/1lvFpmmfLOYNx/fQRA6DbWOmHNJ88Wu%2BbLm0pm7DMxdK%2BZuktChac6F/2T1y/X3jSPa/4eo0dH8k9SU7ztnYqxyOmodxvHkO7rNvjkXfpS13jmiC3q9AyDXnn5Z6uhq6nibhIPWX1dXk17r89vO7Ou/eLXM2Fa5x9rET6/pYv1Mefv1t9G3/fp13%2Bhq9Iq17Qc/%2BMHSHQeax2wn7eNNnERVLH25YvuTyqplarvEWOXGtNoKDbgaeQxzHUdma8a5aYs6nyZ9Wcvz7YWRp%2B7HyOTbCB0HRoeV/Knqn6YPaJsZtk0/Ov5N29dpD1%2BemM0I69f0pr1iNj1MX3WsttvIa8oe59OX8ePL3mRc6LiNjX/9XfbLnnS/bbuh8oe/K8Z2GQ5VLNqWZ1I%2By5lfx5dvw/391WYflrMtqBsCEIAABCAAAQhAAAIQWDkEehXkWDlY0QQCEIBAOwRC52A7pVIKBCAAgekRwI5NjzU1QQACEIAABCAAAQhAAAIQWI0ECHKsxlZHZwhAYGYI4BycmaZCUAhAIEEAO5YAw2kIQAACEIAABCAAAQhAAAIQaIUAQY5WMFIIBCDQZwLmkXPm8UDmcW91v6n3/kxbT5yD0yZOfTECszyGYvrMwrmVxBw7Ngs9DhkhAAEIQAACEIAABCAAAQjMLgGCHLPbdkgOAQjUJGCcheadFv5zz6v2jVOuDx%2Bcg31oBWSY5TE0q623kphjx2a1FyI3BCAAAQhAAAIQgAAEIACB2SBAkGM22gkpIQCBVUoA5%2BAqbXjUhsAKIoAdW0GNiSoQgAAEIAABCEAAAhCAAAR6SIAgRw8bBZEgAAEIKAGcg0qCLQQgMKsEsGOz2nLIDQEIQAACEIAABCAAAQhAYDYIEOSYjXZCSghAYJUSwDm4ShsetSGwgghgx1ZQY6IKBCAAAQhAAAIQgAAEIACBHhIgyMT/mUoAACAASURBVNHDRkEkCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEqgkQ5KhmRAoIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAR6SIAgRw8bBZEgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCoJkCQo5oRKSAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEOghAYIcPWwURIIABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKCaAEGOakakgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoIcECHL0sFEQCQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgWoCBDmqGZECAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBHhIgyNHDRkEkCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEqgkQ5KhmRAoIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAR6SIAgRw8bBZEgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCoJkCQo5oRKSAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEOghAYIcPWwURIIABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKCaAEGOakakgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoIcECHL0sFEQCQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgWoCBDmqGZECAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBHhIgyNHDRkEkCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEqgkQ5KhmRAoIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAR6SIAgRw8bBZEgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCoJkCQo5oRKSAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEOghgTX79u0TvjCgD9AH6AP0AfoAfYA%2BQB%2BgD9AH6AP0AfoAfYA%2BQB%2BgD9AH6AP0AfoAfWDW%2BgB3cvQw8oRIEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIVBMgyFHNiBQQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQj0kABBjh42CiJBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCBQTYAgRzUjUkAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEINBDAgQ5etgoiAQBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgEA1AYIc1YxIAQEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQA8JEOToYaMgEgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAtUE1pw5c0ba/PpVXr58WfTrn2cfAhCAAAQgAAEIQAACfSJw7NixPomDLBCAAAQgMCSAfaYrQAACs0IAezUrLYWcy0Gg6/FBkGM5WpU6IQABCEAAAhCAAAR6RaDrSXevlEUYCEAAAjNEAPs8Q42FqBBY5QSwV6u8A6B%2BlkDX44MgRxY/FyEAAQhAAAIQgAAEVgOBrifdq4EhOkIAAhDoggD2uQuqlAkBCHRBAHvVBVXKXCkEuh4fBDlWSk9BDwhAAAIQgAAEIACBsQl0PekeWzAyQgACEFjlBLDPq7wDoD4EZogA9mqGGgtRp06g6/FBkGPqTUqFEIAABCAAAQhAAAJ9I9D1pLtv%2BiIPBCAAgVkhgH2elZZCTghAAHtFH4BAmkDX44MgR5o9VyAAAQisSAJHjx6VD33oQ2K2fCAAAQhAYECg60k3nCEAAQhAYDwC2OfxuJELAhCYPgHs1fSZU%2BPsEOh6fBDkmJ2%2BgKQQgAAEJiZgAhu/8Ru/UQQ5zJZAx8RIKQACEFghBLqedK8QTKgBAQhAYOoEsM9TR06FEIDAmASwV2OCI9uqIND1%2BCDIsSq6EUpCAAIQkCKgYQIbX/nKVwocZkugg54BAQhAYECg60k3nCEAAQhAYDwC2OfxuJELAhCYPgHs1fSZU%2BPsEOh6fBDkmJ2%2BgKQQgAAExiagd3BogEMLItChJNhCAAKrnUDXk%2B7Vzhf9IQABCIxLAPs8LjnyQQAC0yaAvZo2ceqbJQJdjw%2BCHLPUG5AVAhCAwBgEUgEOLYpAh5JgCwEIrGYCXU%2B6VzNbdIcABCAwCQHs8yT0yAsBCEyTAPZqmrSpa9YIdD0%2BCHLMWo9AXghAAAINCFQFOLQoAh1Kgi0EILBaCXQ96V6tXNEbAhCAwKQEsM%2BTEiQ/BCAwLQLYq2mRpp5ZJND1%2BCDIMYu9ApkhAAEI1CBQN8ChRRHoUBJsIQCB1Uig60n3amSKzhCAAATaIIB9boMiZUAAAtMggL2aBmXqmFUCXY8Pghyz2jOQGwIQgEAFgd/6rd%2ByLxmvSGovm0CHyccHAhCAwGoj0PWke7XxRF8IQAACbRHAPrdFknIgAIGuCWCvuiZM%2BbNMoOvxQZBjlnsHskMAAhCAAAQgAAEItEKg60l3K0JSCAQgAIFVSAD7vAobHZUhMKMEsFcz2nCIPRUCXY%2BPNTfffLOcOXOmta9P5fLly6Jf/zz7EIAABCAAAQhAAAIQ6BOBrifdfdIVWSAAAQjMEgHs8yy1FrJCYHUTwF6t7vZH%2BzyBrsdHEeRoM9Dhq6MBDrPlAwEIQAACEIAABCAAgb4S6HrS3Ve9kQsCEIBA3wlgn/veQsgHAQgoAeyVkmALgVECXY8PG%2BRoK9Dhq0CQw6fBPgQgAAEIQAACEIBAXwl0Penuq97IBQEIQKDvBLDPfW8h5IMABJQA9kpJsIXAKIGux0cpyNFGoMNXoU9Bjl/7tV%2BT5fz6XNiHAAQgAAEIQAACEOgXga4n3f3SFmkgAAEIzA4B7PPstBWSQmC1E8BerfYegP45Al2Pj5Egx6SBDl8ZghwusOJzYR8CEIAABCAAAQhAoF8Eup5090tbpIEABCAwOwSwz7PTVkgKgdVOAHu12nsA%2BucIdD0%2BokGOSQIdvjJ9DHL48k1jX%2B8emUZd1AEBCEAAAhCAAAQgMB6Brifd40lFLghAAAIQwD7TByAAgVkhgL2alZZCzuUg0PX4SAY5xg10%2BJAIcoh9RJbPhX0IQAACEIAABCAAgX4R6HrS3S9tkQYCEIDA7BDAPs9OWyEpBFY7AezVau8B6J8j0PX4IMiRo9/CNe7kaAEiRUAAAhCAAAQgAIGOCXQ96e5YfIqHAAQgsGIJYJ9XbNOiGARWHAHs1YprUhRqkUDX42PNmTNnxNy1Efuaa02/vu7cycGdHH5/YB8CEIAABCAAAQj0lUDXk%2B6%2B6o1cEIAABPpOAPvc9xZCPghAQAlgr5QEWwiMEuh6fBRBjlSgo2mAw6T3PwQ5CHL4/YF9CEAAAhCAAAQg0FcCXU%2B6%2B6o3ck1K4JTce9un5KabPyW3bjo1dmFHdm2TO4blmLJuunvP2GW1n7EdHduXixJXCwHs82ppafSEwOwTwF7NfhuiQXcEuh4fNsgRC3QQ5Ji8YXlc1eQMKQECEIAABCAAAQh0TaDrSXfX8lP%2BchHIBwB23n3XIACSCVoc2TRIUwQ3TIDDC3LUyd%2B95nkdu6%2BfGlY7Aezzau8B6A%2BB2SHQF3vVj/nD7LQbkk6HQNfjoxTkCAMdBDkmb%2BRlC3Ls2jhYIBULpbvk3hN1ddkjdwwXV3fsqpuHdBCAAAQgAAEIQGC2CbQ26S7NwYYOa3VcD7e33naX3HH3Nrl31/j//J9t2itJ%2BlwAwM2rb7p5o%2ByMqX1im9yq/WLTHjlSSlMjfyl9Vwc5Hbuqk3Ih4AhMbJ9r2OVSkNGz2ayJXTuwBwEIVBOY2F5Fqhjc7XmXnS%2BovSrmk7tOBXMHU0Bf5g8RZTi1qgl0MT58oCNBDj/QQZDDRzXefj%2BCHJ%2BSm27bFjF8MZ2cMWRCF%2BPDOQhAAAIQgAAEViKB1ibdjZ1pd8kdI87tlUh4peqUDwBU/ZPS3sWRmKtX5Z8O1byO05GBWlYzgYntc2O77ALUrIlXc89Ddwg0JzCxvfKrPBE8ytILwGqgw7/708/aj/mDLxH7EBBpdXxEgEaDHBroIMgRIdbwVG%2BCHDd/SupN0AhyNGxikkMAAhCAAAQgsAIItDbpts60u4o7NY6cOCX%2Bd%2BeuPXLvpo1yq//%2BBbNoTTi520Br/wE4wTsj2pBjZZYxSQDA5e3XOzjClnJyTvLekbBUjiFQl0Ab9tm3w3Z/l95JFbfXJh0fCEAAAk0ItGGvivq8Oz1vuvkuufXubbLT3LUxnFfu3LVN7h0%2BErPfc4gm9Ei70gm0Nj4SoJJBjnECHCaP/%2BHF48v44nG7wN4od9yt/0RJ3CbvN5p3W1u9oEgpMwcQgAAEIAABCEBgJgm0Num2c7Aajws9saf8sulOAh04qLvtkJPwdXn77aBwchLk6LY3UXqcQGv2OSzeOhFr2OswL8cQgAAEIgTasVfud7d43GXu8fNmLrlpT0QSTkGgfwTaGR9pvQhypNm0cmX57%2BTYKDvt5O1TUr2A4k6OVhqeQiAAAQhAAAIQmCkCrU26mwQ5CkL%2BQvZT0r4T2ZXfftkz1cQdCTsJX5e3eo7ekfi1inVy0odqASNRywRas8%2BhXHadTJAjRMMxBCAwHoFW7JW1TV3MC8fTi1wQaINAK%2BMjIwhBjgycNi71IsghIvZ5v5WPrSLI0Ua7UwYEIAABCEAAArNFoLVJd%2BMgh%2BHk5l/tP7YKB3W3PXESvi4vQY5uW4nSZ5tAa/Y5xGAdiQQ5QjQcQwAC4xFoxV5Z21T3sfPjyUouCEybQCvjIyM0QY4MnDYu9SXIIeItorKPQnCL7PTjqk6JPtu59LKj2/IvzrSBFq3/xJ7iGYK3ei9PuvXuPcEL0k/JTvPcai/NTaaeXfWejxqT89bbNhbPyG6jfSkDAhCAAAQgAIGVQaC1SfdYQQ7/DykpZ1uz%2BZedd/lzqGA/NdfrYv5k5ZnmPDAy1zRz16ZzwRSPncXjI9wcO3aXw059bKzqbYaL7SP6SNlw6/pANH9kyKVkvHfCOXMdHSPicAoCrRJozT6HUllHohtzfhI7/m6u89hnZwv8oKW1fV4ZR3aF72UaPm8/90gaT7BJx7tXFLsQgEDLBFqxV9Y21XkaS1wBa7/8%2BYeI2PPBnLDk2/OuTXOuGNeEsyuJQCvjIwOEIEcGThuX%2BhPkEBHPUMYWYQN9K4Ic5nl/nsGLGsLAiCpHO8Ez1z1ZRsvQSWTwnOqgXhMQSX%2B8SWaQz9aXkDNdJlcgAAEIQAACEFipBFqbdFsHdtxpluTnzY1G5mljzL/svCs1D4re3dvd/MnKM615oL6MM6P/TbeZx7omW2Rwh034gvigPPPHm3uHaUbazXcm%2BPNO20fC4IYeu75jnRF%2B/pLIrn47xw1kzN8dlJ9vmzKrdCyJwwEEOiDQmn0OZbN21425UhJ7vca/qW3aclnW9hVBjurxmv8zX3X%2B/HgvaccBBCDQAYG27JX9/Td/zthU70%2B%2Bvjo2fzB/sOfDuULsOOpzww75nNlvRqCt8ZGqlSBHikxL53sV5Cg9tqo8%2BXLquiBGNGKrk7fh3RBHbMZTpYhwzAjbCd5tdw3uzLhtm7ewNPnvErs4u3vbcMFo7g455e7uKL2gM6WDb3QHd32U5PTvDIkabasUOxCAAAQgAAEIrBICrU26rQM7NU9JAXVzMP9fwEXqCeZf/t28sfmZk6bb%2BdPyzAM/JcVdwn4g40R4l7D%2BucaRGOwFPDaV7zYe/JNagxKDbYyvdSYEToaROhJz0tr5bx5nztuOjiE5jiHQNoHW7HMomNrWm1P22hsj0THsCkyNVWv7bt4odxR3doVjVYqnJLgnF9SQZazx7mRlDwIQ6I5Ae/bKmxeaAETlHzPKOqVsUjnV6JHN59195lJ5NhE75LCwV5tAe%2BMjXiVBjjiX1s72LchR/cxnZ0jjQY49mUc9eQYvMgl0E7z0LXfOoA4Wi3EZtrnHV0UWhK6ezL/zxnZAtNY1KAgCEIAABCAAgR4RaG3SPfYcw5tHhfMb89il5GOHvHyR%2BVfdIEfX8ydX/rTmgRX/vLbOzbg8Tt6Uw9F0Xo994p%2BWdm5b0TYjga3h2MjldzKON%2Bd1%2BSfTsUfDGFFWKIHW7HPIx9qBzBioZdPdGjoMdrpxZta3mXoq3s3kyhlvvIeqcwwBCHRDoFV7VfqT7/CPFUWwo/rOjtz8IaW5szNxW%2BWuY4dSDDmfJ9Dq%2BIhURZAjAqXNU/0LcpSfAxxOwvwgSDTAUAGnZPSCtO5a3GAWye1E00Sqt7k7OIKy0gbbTTDz8rtF6SiDoDIOIQABCEAAAhBY8QRam3TXcojFcLq5ScrhHctlzrk5VuyuBFdues7T/fzJyTideWBaV0fRyRRyczwqy/HmrrG06TmrkcO1TarN0/mdjOPNeV3%2BmNyOUt1H3pZycACBVgm0Zp9Dqez4zdglL/iQHCvW7oe2xLfP1Y%2BccTYplMeN1/HGe6g4xxCAQFcEurBXxXt8wsdJVdzZkZ4/JDS39jBlq7BDCXKcbkCgi/HhV0%2BQw6fRwX4vgxz%2B84FHbkGra7jisNzELDfBG73mSnP1JyeRvvxhICQzwXR1DPas0Q//LRkm5BgCEIAABCAAgRVPoLVJt52LhE6qKoRuDpRyeKdKyM2/fEd6cm5lZc7N0Qa1jzt/ysuomjkGSVlrzQNrsvcW9CXHoeVRp5y8zJZXOGctVJ4gyGFlHLPNbP7JddTWYwuBrgi0Zp9DAa0NyI%2BDScZxPds3FMzKE9yJZsfrmOM91JtjCECgMwKd2Ss5JaPBjsHj72LK5O1WmMPNZZJzUOxQCI3jMQh0Nz4GwhDkGKNRmmTpa5DDv2OjbMSccSst9kaUNgZ2j%2BzctE3uuHuj3GHes1F6MePoBMxO8KKLPK2gXv2psuz5MMqdOybIofDZQgACEIAABJadwNmzZyeSYdz8rU267SIw7zQbUdJzbqUd/M3nX3WCHNOYP9k6pjIPHJ2HjvAuTsTnnVbWkT8DxUpxgYpYu%2BWdDC5veT7u6knldzIOH1%2BRm%2BvqNW/O6/LXYeXkjOnopGVvpRMY174ql3Hzt2afVRDdWrtbYa9tuiD4YMqx1%2BJlNBtrzib5Y82VMd54V3XZQmA1ERjX3iijcfN3Zq9UMAnfLRa/8yI1f7DFeDs2bWbegx3ygK2A3XH7t6o%2Bbv6uxwdBDm2hjrb9DXKUH1vlAhpuYuXO%2BXBOyb3%2BC8J10TSyHV0wWaM4lcUtE0C/1diHAAQgAAEIQCBPoLVJ97hBDpsv4kQzjzUac/61KoMc2bmm3w/cvDfqUKxVTj4AYB0H0bJc3mULckTl8hmZfSenzylMxTEEuiLQmn0OBawIULjkbgyEY7VqjWuvZ5yHrp4KmzSy5s6seb2gpiufPQhAoGsCndmrUHDzvg5rE0aDrPn5hyvM2ajRMlyq8qP3brL1ZmyQSYMd8hGyLyJdjw%2BCHB13s14HObwFy0120uUM5WiQw10zRu3Wu7fJveZujhOn5MiJAUhnIJc5yFFrwdZx41M8BCAAAQhAAAIzQ6C1SbcNVuQXiyEYuxi1czJNMdn8q46D2s7fOpw/1avD6To6D1Ue3kI7kNfWMcLQ5S3vxetrVo5zfsYCALZdA1kHcri8KUdAKr%2BVMVpuWcvYkc1fi5WTM6ZjrHzOQaBNAq3Z51Co2kEO/w%2BC/jo3bkP8apqNtXh5towxx7svD/sQgEC3BDqzVzGx7Zxz9G6O1PyhVIy1gaP5S%2Bn8979hh0I0HDcg0PX4IMjRoDHGSdrvIId/e60atfjEyuhuJ1dmMTQMaoRMSmmCi/Za1iim6/eLS5Zljbw/%2BfRzsg8BCEAAAhCAAARGCbQ26bZzkQZBDptH52NOPjvnGXP%2BVSfIIbb%2B7uZPVo%2BpzANrsreL%2ByC95RGcd83i7bm5aywAkHcyuOBB0yDHxG3Woo4eDHYh0AmB1uxzKF3KBoTpimM31m0Q1o6jtO20tq9OQNGWF9geez5dT1RkTkIAAlMn0Jm9imri7FI4B8nPP0xhLm9qDlKqEjtUwsHBeAS6Hh8EOcZrl9q5eh/kKAUvzGTKGTo7eRtqa41k5pYzmyYyibMTvC4Xt3aiOuokqN1oJIQABCAAAQhAYNURaG3SbReBgZMqRdSbu7g7a11iO7cac/5VK8jhyRAukp0kk%2B1NZR7oLdjr6GFlCuetTXjY9o7PPW37Ree/EwQ5msgYa7om%2BSt0jBXPOQi0SaA1%2BxwKZcdBPXttbcbQHuv4ztkbm%2Bfm2KMIywJpeTeF9sLKGbcz5VI4ggAElpNAZ/YqplTGNiTtybAcez2cA8XqMecydaWycB4CIYGuxwdBjpB4y8ezEOTwF783mReID5%2BvlwxyhJMuZeYZvdgi3U7wUvmLctJBFq3GbHNlOWNdMVk1AZ1Ne/xi2YcABCAAAQhAYJUSaG3SbR3CFfOQkRdHxtPbeU1q/lQx/yrN82oFSuJy2G4x5vwpN3ezZXtBinAe6tLUnQdWOBQ9bqMOSi/4cHOGh/fnoOJRrptO%2BWIW%2B/n28%2BpJtE0uv72Wk9FIEW0zr%2B5c/ho6jijNCQi0TKA1%2BxzKZe1AZpz7eUrptw3Xzfm81vaZNXbKjps67G9HPJAx2Xj3lWAfAhDokkAr9mrXtsJXdaRC0JxdsNcidsfZpbz9Cqu3ZebmDSZTdN4RlsbxaiTQyvjIgCPIkYHTxqXZCHKUo7L6EqFwcekMoXkfxx5xBveUHNm1sZjk3XrbXTLIP3orrc0fMbKO9eRBDj/CfNPNdw1%2BHPzHa504JTvvHgZzEgtKJw97EIAABCAAAQisBgKtTbqto%2BouuXeXeW%2BZ/90jO3dti7xEPL3ItPOn4n1ozedfpu1Ki9JdQ0f8CfNuNa9lrfPOvESy/fmT1aPreaAJlNzmXoRZzFnDeeCmwby1mLOm5LHtOORh2tLicnPfm27baOsbDZZ47KP1eIGGxJzUtl0s/6Rt1pKOFgs7EOiIQGv2OZTPjqG0DS5ncWPWrnsTY1fzWdunL%2Bq9bWPx26DXTSB65yZdQ2cCIVbWbmy0k4c9CEBgEgKt2Cvv9/nWwmbou3AHc8qdm7bZuUcxl4nYoeT8wbMlsXlLVncvbxdzxWzdXFwRBFoZHxkSBDkycNq4NDNBjtICeLAwDIMcpX8C6iTN2xaLSDtBW8Ygh2m4kvF1C10N4Oi2sVFvo1NQBgQgAAEIQAACvSPQ2qTbW5jqfCO3Lf9xJIbFOdVi5VTNv4oSE/OikbleIl1Y7zjzJ%2Bvoiznrrdot/NmlKKsc6Ajl1%2BMq9vonHk0/sr3NzHdd%2B8S4JJ0MhZwub%2Bp52Pn8k89529DRNh87EOiIQGv2OZTP2ry6QY7yHRfGJozY0aAOa/vMI2FsfYn1aWFTggL8w6r8w7V5zBb5xbAPAQh0R6AVe9VgLpmay8TnD26eNTKn8Xx77lrENmKHuus8q6DkVsZHhhNBjgycNi7NUpCj9OKh5ITN/NPE%2B/ebMYS33SV3DP8VWJrEBQDttaksbk3lQ1m9f/MVxtrIu2mPHPH/1RfIyiEEIAABCEAAAquLQGuT7qqFqXk06PCfvO7OgCrW48%2B/bMkngn/9GRmic6Fu5k/TnweKHDGPe/AexTpYtN8lt969TXaeGH20lGXl75zYU9x5o49zLc0li3QuUBFzLMadDFqByzt2kGMoQzE/H3fOO6GOqg1bCHRFoDX7HAponXURR16Y1h57TsLsunaQwdo%2Bfe79cLw5J%2BKn7G%2BCrSK7042NzlbJRQhAoDaB1uyVsRXG9zYyjzE2o9qnFZt/OHuUCLSOBDpSthE7VLtDkLBEoLXxUSrVHRDkcCw62Vu2IEcn2lAoBCAAAQhAAAIQWJkEup50r0xqaAUBCECgewL9ss8uyBELbIY0nFNx9EkHYVqOIQCB2SfQL3s1%2BzzRYGUR6Hp8rLoghwYdpr1dWd0SbSAAAQhAAAIQgMDKItD1pHtl0UIbCEAAAtMj0Cf77IIWqX84l7m49AQ5ymQ4gsDKJNAne7UyCaPVLBPoenwQ5Pi1X5NpBDxmuRMiOwQgAAEIQAACEFjpBLqedK90fugHAQhAoCsC/bHP1Y%2BYCxkQ5AiJcAyBlU2gP/ZqZXNGu9kk0PX4WDVBjtlsfqSGAAQgAAEIQAACEJgGga4n3dPQgTogAAEIrEQCvbHP9p1L9e7iMG1BkGMl9kh0gkCaQG/sVVpErkBg2Qh0PT4Icixb01IxBCAAAQhAAAIQgEBfCHQ96e6LnsgBAQhAYNYILL99PiVHdm2UW/WlvHfvqY2QIEdtVCSEwIogsPz2akVgRIkVSqDr8UGQY4V2HNSCAAQgAAEIQAACEKhPoOtJd31JSAkBCEAAAj6BZbPP9s6NT8lNGuC4bZsc8YWr2CfIUQGIyxBYYQSWzV6tMI6oszIJdD0%2BCHKszH6DVhCAAAQgAAEIQAACDQh0PeluIApJIQABCEDAI7Bs9rkU5LhL7ti0p1GAw6hAkMNrSHYhsAoILJu9WgVsUXH2CXQ9PghyzH4fQQMIQAACEIAABCAAgQkJdD3pnlA8skMAAhBYtQSwz6u26VEcAjNHAHs1c02GwFMk0PX4IMgxxcakKghAAAIQgAAEIACBfhLoetLdT62RCgIQgED/CWCf%2B99GSAgBCAwIYK/oCRBIE%2Bh6fBDkSLPnCgQgAAEIQAACEIDAKiHQ9aR7lWBETQhAAAKtE8A%2Bt46UAiEAgY4IYK86AkuxK4JA1%2BODIMeK6CYoAQEIQAACEIAABCAwCYGuJ92TyEZeCEAAAquZAPZ5Nbc%2BukNgtghgr2arvZB2ugS6Hh8EOabbntQGAQhAAAIQgAAEINBDAl1PunuoqHBlkAAAIABJREFUMiJBAAIQmAkC2OeZaCaEhAAERAR7RTeAQJpA1%2BODIEeaPVcgAAEIQAACEIAABFYJga4n3asEI2pCAAIQaJ0A9rl1pBQIAQh0RAB71RFYil0RBLoeHwQ5VkQ3QQkIQAACEIAABCAAgUkIdD3pnkQ28kIAAhBYzQSwz6u59dEdArNFAHs1W%2B2FtNMl0PX4IMgx3fakNghAAAIQgAAEIACBHhLoetLdQ5URCQIQgMBMEMA%2Bz0QzISQEIMDjqugDEMgS6Pr3nCBHFj8XIQABCEAAAhCAAARWA4GuJ92rgSE6QgACEOiCAPa5C6qUCQEIdEEAe9UFVcpcKQS6Hh8EOVZKT0EPCEAAAhCAAAQgAIGxCXQ96R5bMDJCAAIQWOUEsM%2BrvAOgPgRmiAD2aoYaC1GnTqDr8UGQY%2BpNSoUQgAAEIAABCEAAAn0j0PWku2/6Ig8EIACBWSGAfZ6VlkJOCEAAe0UfgECaQNfjgyBHmj1XIAABCEAAAhCAAARWCYGuJ92rBCNqQgACEGidAPa5daQUCAEIdEQAe9URWIpdEQS6Hh8EOVZEN0EJCEAAAhCAAAQgAIFJCHQ96Z5ENvJCAAIQWM0EsM%2BrufXRHQKzRQB7NVvthbTTJdD1%2BCDIMd32pDYIQAACEIAABCAAgR4S6HrS3UOVEQkCEIDATBDAPs9EMyEkBCAgItgrugEE0gS6Hh8EOdLsuQIBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgECPCRDk6HHjIBoEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAJpAgQ50my4AgEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQI8JEOToceMgGgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAmkCBDnSbLgCAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAjwkQ5Ohx4yAaBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACaQIEOdJsuAIBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgECPCRDk6HHjIBoEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAJpAgQ50my4AgEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQI8JEOToceMgGgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAmkCBDnSbLgCAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAjwkQ5Ohx4yAaBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACaQIEOdJsuAIBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgECPCRDk6HHjIBoEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAJpAgQ50my4AgEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQI8JEOToceMgGgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAmkCBDnSbLgCAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAjwkQ5Ohx4yAaBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACaQIEOdJsuAIBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgECPCRDk6HHjIBoEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAJpAgQ50my4AgEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQI8JEOToceOMI9r5y1fk6Omzy/I9d%2BnKOCKTBwIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAwFgGCHGNh62em999/Xx557lX56JcfkL/8%2BsOJ7/zwvNm67y1fnxf9mvNm/y%2B/vnnk%2B4mvbZaPf%2B0h%2Bb%2B/%2BpD8xVc2yZ9/ZZN85M775UNfvE/u3f5LuX79ej/hIBUEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQisOAIEOVZQk7733nty/xMvyZ/d8aCsu/MR%2Bcgdj8hHi%2B/D8tE7H5aP3uG%2BH7ljfnDuTrOdl4/Z72b56Jc3y8fu3Cwf1e8dD8lH79gkH7ljk/zpPz0oH/7SA/KhL9wvfzz3U/nDf/yJ/P7n7pPf%2B9yP5UePPy9Xr15dQURRBQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABPpMgCBHn1unoWwmyHHfthfk5i89KH/y%2Bc3yx/%2B4ST5ovnMPygfnzL7ZPigf%2BsdN8sdzD9jjD37%2BAfnQ3APyoeH2g5%2B/Xz70%2Bfvlg5//mXxw7mfyx%2Bb7jz%2BTP7r9p/KHt98nv/8P98nv/v298juf%2BXf5rU9vlN/57Eb5vc/dK997%2BBmCHA3bjOQQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAwPgGCHOOz613OQZDjefmzf3pQ/vSL80Wg40%2B%2B8JCY74e/sHm4NfsPyZ988SH58Bc3yZ98cZN8%2BEub5OYvbCqOP/zFB%2BVPvmju1hh%2Bi%2BMH5D9/YRj4mPup/NHcz%2BQPbv%2BJ/F9/f6/8p//%2BY/ndv/%2Bx/P7t98l3Nj1JkKN3vQKBIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQisXAIEOVZQ25ogx0O/%2BKWsW/8TueUbD8rHv/qAfPxrD8gnvua2n/jq4Nhuh9f/stjeL3/5tfuL9J8otmb/fvnEV8vfj3/1ftGvuf7Jr5s7RzbKDx/%2BBUGOFdSfUAUCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQN8JEOToews1kM%2B8eHzp1Gn57D2PyE937JXvbt0jG7btkX/dtke%2Bt22PfH/74PuD7Xvkh08Mvj96Yo/82xO75d%2Be3CP/9qTZDr4bvf3iuknzxG75UfD99yf3yJMvvia//9/ulv379/Pi8QbtRVIIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCYjABBjsn49Sr3jRs35OLl9%2BRLP35Onj58QR567axs3jv4PrzvrDyy76xs2XdWHtt/Vh4330XzPTP8%2Bvtn5Of2/Bl5fH/5%2B9j%2BM6Lfba%2BfkcWl8/Lhz/1Yjh8/3iseCAMBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIrmwBBjhXWvpffuyZfvPcFefboFXlk8aJsef2iPGq%2BBy7KYwcuys8PXpTthy/J0sIWObawVZ44dFG2F98Lsv3QBXni0GBr9rcfHO6b7cELsi34bj14QZ48dFEOnb4if/qPP5GlpaUVRhN1IAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoM8ECHL0uXXGkO3Se9dk7t%2BflWePXZFHXr9ggxwmwPH4MMix69Db8t4Dn5QLm/9Onj30TinIUQQ3/ECHBjuCAIcJeAyCHBfk4NuXCXKM0VZkgQAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgckIEOSYjF/vcl%2B6ck1u/7dn5LkiyDG8k2N4F4cJcpi7Nt7adb9c%2B/GfytWf/LkceGWHPHHYnI/cyeEFOGJ3cphAx1OHL8qhd67IR%2BZ%2Byp0cvesNCAQBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAYGUTIMixwtr30pWr8vff/0UR5DCPqioeV%2BU9quqXr78hlx78r3LtRx%2BUaz/6Izm97Rvy7MHTNshhgh1bD5yXTbvPys8W3pWfvvSu/PTFd%2BS%2BXW/LvS%2Bclh8/f1r%2B/bm35N%2BfOyWbd78rT79xUd48c1U%2B9sUHCHKssL60fOosyvq1a2TNmjWydv3i8olRs%2BbF9WsLWdesWSfzNfP0Jdn8ugHnNWvXS/9J94UackAAAhCAAAQgAAEIQAAC4xBY2HCL3HLLLXLL3BbhYdfjECQPBCAAAQikCBDkSJGZ0fMmyPGZDU/aIId5H4c%2BqmrboYtyfOeP5erPPiHXfvAHcu17vydXfvJxeeXV3aV3ccy/dk4%2Bf/9x%2Bet/PSz/77cPyF/98z75%2BNdflXV3vSx/dueL8idffE7%2B8%2BeflfWbDsozRy7KsXPX5C/ueIggx4z2mf6JvTxBjvl1g2DF2nXNQhUEOfrXg5AIAhCAAAQgAAEIQAACEFgeAgsb5opAxtyGhREBCHKMIOEEBCAAAQi0RIAgR0sg%2B1KMCXL83Xe2y/PHrpTu4jCPqtr1%2BlE5t/kz8u4z35MrD39arm34Hbn23d%2BW48/cK08fOmPv5jDv2nj4tXPy0O6zsumVM8X3wZfflQdeflfMdtMr78jmV96R7Yvn5Pmjl%2BXEuWvyifXzrQY5FufXy7q1%2Bg95/bf5Wlk3v1j5j3PndB7mWxPbrpXcTQKT1C%2BLizK/fp2sHd6NYO5IKO5KWLtO1s%2BP/395X6/Gdzgszsu6tfXvjJhI/4kHw3IEOeZlne0nze7IcO3SLN/EmFoogDs5WoBIERCAAAQaEFjaMnD8mH%2Bxzm1p/h9Wmz90HC0tycKWDTI3N/yHrPmXrKljboNsWWhej6qUrE9Elha2yIY5p8/gn7lzsmFhqea/c5dkaSGUeU7mNmyRsUReWpANczW5dsRLuUW3TeRrhW9UivjJBrLZPjHsY0W7j%2BzPyRjdW2Rpi8yNlOX16TntH5k%2BHZQRDpU4gNjZBdlgZRlTn1ixnFteAgsbBncR2Lb1%2Bpc5NzcnG7YsRG2Y6/tj9AevX6Ztv9/nNshoeCCBzuo0hlyJIovTnszxce6xK92VkdeDIEcOOtcgAIEVRaDB/Cqrt7XzVb8NGftry/Bst/9bmPn9y8rWs4sEOXrWIJOKY4Icn7pnaxHkMHdxPKqPqjpwURZfelKu/uwW2b1/UY7teUqufecmuXrP/ymXf/pJeX7xmA1yPLZ4Xn6082359vZT8i/bTso/bz0h3/r5cfnmY8fkm1uOyDe2vCnf3PKGPPjiaXnx%2BGVZOv%2B%2B/D9ff1SOHz8xqfgi4hzcGhwY2a7NO5Ot49Y6rZsEOSasf37d8NFFsTqHwY5185WBmlGQvhO%2BfrDClLM4v07WaqAlF9kpKp1Q/1HBxzjjZGgczBmjNs3CnRxKgi0EIAABCHRDwF941HTGlwRx%2BUuO26pFiwl2bIg77UrFjxwk6pMl2RIEU0YcYHNVi7CqMkywZESg5IkiWDJcqKUdiMPsnfFKijcI5tSVrxW%2BaVnCK43YiYh1UPoL45H9MZ2tDZyqyT4dltGkI3lwnEPbOAPG1Mcrj92eEKgx/gf2LNLmXt%2BqtDOBuq4/RcrVtIFstbuuzZcpW%2BtosvX0HbHx4ZgvBTmMneBOjiaoSQsBCKw8Ak3nV1kC1s7n5tf%2B3Drye2DLSAQ5rF2P5M0K16%2BLBDn61R4TS3PxylX5m3/5uQ1y6KOqnjrwrpza9nU5s%2B0rsvPAaXnm8Hm58uOPydW7/w%2B5%2Bq3/KIdffFyePHy%2BCHSYuzjmfnZc/r8Nh%2BW/fPuAfPLu/fKJr%2B%2BRP//Ky/KRO1%2BUm7/0vHz4C8/KNx8%2BLC8vvScnz78vf/vt7fLGkeMTy%2B8CFMFdG8XdEd6dHZl3CNgyTDBhcTH5jQlr864Zs/5hkMM88mjRu2ljcXHevmeiuKujMthQls7dLTAMlNTIP7gboxxsqQoaTKx/Wewxj5YnyDGmsOLaJh98G7f8LvPZ9s6Mpy7rp2wIQAACq4mAc3INFhdNnWSii5PAmaTnC6ev9wf3paWFUjCirfqckzu4a6O4O8K7syOU0zZ2eRFm7vzQj7k7xP2Tv3qRNbibpLxYq9RzyLF1XqqEtx1Hvsn5egJkdseRzRRn5TOBs6Wl5DdTdfqSdarOFXcglctfGNytZBfht8gtMS%2BwLUP7RXU/GhXIBfiSDu/RTJyZBQJqR03gytx15vXhhfDutBEb5tmukWs55evls2NL%2B3isf8eq8XVy5jSWstk5bywVd%2Bh5rHxug/36RVs9GzGsXz4pIQABCCwngXHnV1mZrZ1PBTm835nUHzNsGeP8/mWl69VFghy9ao7JhTl/6Yr8zT2jQY5f7l2U9%2B77uBzf%2BRN5de%2Be4ntm%2B9fk6jf%2Bg1z92v8ulzd%2BRJ47dLp4N4d58bh5VNUDC2fkgYV3i%2B%2BmhXfkoYV3ZPPCOzL/8tvyyMtvyzMHz8trb12Vkxevyz/%2B6BlZPHRkYgUKp2vG4eocymsk9eoEddxWOfRjwk5c//z6zGOwnPO%2B2Uuqy3dxVAVJFs2jskp3say1x1VMJtY/BrXxOcepSt7GRXeQwfVJghwd4KVICEAAAiuEQOg0bXonh1u8jDjxF7ZkHg3k8t1yS2phFEPs8oX1FQ6qjHPKD%2BZEfXT%2BIivmkPMca1EntnmUk3k0lzoCi%2B2cPQ7lHdGuE17lWiaRb2K%2BZVFGjiaRzRSmDspKziM11zhh2z4XmHB90wQgRvqYV4Z9fNtIogpZtI%2Bax2MN%2B9dYj9%2BqqIbLy0BA2zblBCrsiwvWhl3H2bdcHw30sn0y0l9tUvcbsWGDPlKrps2uoZOtpslOLbmbFDhIqzaEF483Z0cOCECgvwQmnV9lNbN2Pv67YO1qbF6kBdsy0r9f7jcu93ulBfZzS5Cjn%2B0ytlTvnLskn/7utsGdHMNHVW09dElO7fhB8f6Ny/92s1zc%2BFG5%2BG8fkcv/%2Bgdy9Wv/m1z9yv9afI8994A8efiiPPLaOflC8eLxN%2BS/fueA/Jd/2S%2B3fPM1%2BfhXX5F161%2BSj9zxgvzZl56Tbz/6hux/%2B6qcunhd1v90l7z6%2Bptjy60Z59evr3iUk3P4xx3gkznIJ69fNYlvnUM8/04QP7cL2qy3742I625yOf2LYEjxaCx3Lp1vUGPX%2Bvt6pffry5suY3pXXJsS5JgedWqCAAQgMFsEdPExt2WLfc5/IyexdTbFFzc5Gm7Bkl7UjOTP1LewZUv0efWuDOesG9XRc1CH3kNXgDiZY/p6ZdhHcblzo3V6BdfYdXU34FUq18linPCDxyq5c1XyTca3JEjkwMkxjmziPUqrSo9I5dWnbL%2BrYG/TRe7msNfmZMPwkTljB/g2aDCtQp5qzUjRFwI1nDz%2Bu2FG%2B7mzb6kgbKiqsykxezZIXUpj%2B3DNYHgdnUKh6hx7cmTMdZ2SSmn095AgRwkLBxCAwEwTmHR%2BVaG8tfOjvyPu96PiN8OWkZnTeHZ/9PevQsaeXCbI0ZOGaEuMt89elM9s2C4vHLsi5lFVPz9wUXYcPivv/fijcuypH8iuvYfkhb0H5MW9B2XhtX3y1qa/l6vr/xe5euevyZXv/q48%2B8YFefLQRfn5/vPy%2BN5zsnXfOdm%2B/7w8sf%2B8PPX6eXn69XOy48B52XngnCwcuySvv3OtCHJ8%2B5HdsrDvjbbUyJTjHOBrordyuOtVDv1MJZlLrvx4/Zms5pJ9Z0dNh7imL%2B5uqQrwmAqMfGul/LgsJ/PkTFxZY%2BlfgWdw2dUxuby1KpwoEUGOifCRGQIQgMDKJ6CLiuLuB%2Bcga7J4sE6hcTxNWn%2BDOzkmqs9zhI84Ab3FU1aVbDqzkDQvoDaPS9Lu4xaXTbhq7tJ2DF6l/IX%2BHcqX41sWJHI0KbsWOUekc87lzAK8yOfkGHGU2r5jyhhjvPntXyorJjDnZo6Abd9cH8v3G2sfa9lUV9aIPbTwvP5cGEbvOHPXnM1eSyebuv6O7f/t/qPX8qujW31pSQkBCEBgGQkYu93h3M/a%2BSDIYc9XBDgMGZt2/N%2B/ZQRcu2qCHLVRzUbCI6fOyu0//IW8cHwQ5Nh66KKcfOEBufSDD8ruvXtl%2B6GLsu3QhWL7xOGLcmDnJnnvG/9Rrv7T/yxX/%2Bl/kjcXtsuzRy7Kc0cvya5jl%2BWl41fk5aUrsufkFdn71tXizo3X374qB965JgfevSYH3x0EOTY%2BuV%2Bef/XQFCBVOcBdICAaA5lYwqr68xVYh3jmkVyuhFAXd9zM%2BT%2BZzE4es9dOWYP3hXjvWFmzRtaaF8oX7zGJ12HZrckFiOowiqfRO2bW1GobRyUmV/Gy97X%2B%2B1BM4Gn9UD%2BX1%2BzZerN6ldmPBpgWJcZ0zdq1sm59%2BkX3tu6GOpc14AgCEIAABNIEnINr4NR3x/Wd8ZontyhJS2D/4VXboTRZfdl/%2B9sFVrBIGxFfZaixaCvyOqdgfa4jlQ5K2jJ8VE1tXvFyymfbky/Lt1jDpl/4W5ZJj5rI5tolG6TSopturVO1qq87mfNBDvd4rXp3c7hyi35UW56mipJ%2B2QhYG5TpY7bdE859W0biuq9cnbSx%2Bmy%2BjJxaT5O0mqfONiZXnXzeY%2B1GxmfFNb/4wXPt3aPDirvP5jYU71Lx07EPAQhAoJ8EgjnFJEJaO%2B/Nnz0bnQ6ie5XaMjK/K16ZnczzPHG62iXI0RXZZSr34PF35IsbdxRBjm0HzsrLr%2B2X977/R3L%2B%2Bx%2BSFw6clO0HLwy%2Bhy7KE4cuyu69r8mFDX8oV7/0P8rVL/4Pcv6HfyavvPGWvHT8siycuCK7T16R1956T/adviqD4MbVIrBx6N1rcvjM%2B8XXPK7q4V1vylO/PDAFrZ2DOh7EqLo%2BqYiTlO/y1glSWAe0VbRZfqdpPGjgrjfZczJYsZpkl3lZV3L%2B%2B4GAwf66%2BYS8i%2Bvtu0WSdeudL%2BadJCnHvS2n/MgwyzuVL6FnOcjhZDePCxv9Dl5oXyrKkzmpl8lg5Q7eR7Po2mS0vqEMCZ3G1bkkPwcQgAAEIJAkYP%2BxalcKzklc1xnfPEjhizPt%2Bkzdrk6r9lCk%2Brq4hWGthZt3d0Ndrj4lt%2B9kn6wcV%2BJgz%2BkzeblOxpCvuxPCvHQ7s4gtiddEtkzdpTLHPLCL6yrZncwj/SMswx7XcEjbtMP6w%2BMx1SJbjwhUOnmW7HtnYg76gSZuHIz0v0BV%2BxuQCZraNKU7Q%2BrXUe/fuYFgdQ5t/68xdoLyrE4RvXPXBsV447v07iVj14bfSLmBCBxCAAIQWGYCzpZNPPezv10a5PB%2BI%2BraQ1tGao5V5/dvmZHWqJ4gRw1Is5Rk96GTsv4nz8qLJ67Iay8/L%2Bcf%2BZxc3vhRuXTvJ2TpmY2ya%2B/B4uXi5o6OHQfekmPP3CcXN/6FXPnOf5Ir3/4dufKvfyinn/6%2B7Dvylrx66orsO/2evP724K6NQWDjmrxx9n15036vF4%2BrembfSXn0%2BeJv%2BJ3icg7lsoPaVZp2%2BJo7BdYPbhVwyRvuVdcfKXBxUea9l4GbR0lVfqzj279rwelWJ0ji6nCO92b5XAm6N5b%2Bmtm7C2TNmtE7DAZ3IpQDA2V5nR6jdzIMKrFO%2ByLAEO8jVofA8W/zBuet%2BIkdW96adbJunZF/EMjwR4PRzb0MPpSrWi9Tta0nlE%2BDH8P%2B7epd9O4SWSNllgGvsMyErpyGAAQgAIEGBOxiQhckJq9blNRb8Lj0Iw7tnChLS7LgvZzbPNqp3mfM%2BrzCbSAj4mS3zq0a8ti0tRZvEy4kx%2BblKZ7dnVA%2Br%2BwcX5NsYfgeivpt3kQ21z%2Bss3HodJxr4x/W1qmaWoAPQdh0kTt97DVXRt2%2BZNNp/4yU5TUFu7NIwNpl1z9UjSXzeLM5daT7dltTuK3tK6XAhLs%2B2HPjJW3v02nq1VEM%2BqHzf1SnUKJGx7b/TzPI4eyRCdRuWFjy3gFV/l2rCjA10pXEEIAABFon4OxZ%2BjegZqX2t8v8Nrlyb5nL/1aVSrdljP5WNPn9K5XZwwOCHD1slElEevbVI/KNTbvkxeNXZOfeN%2BWXe16VheK7RxZ275ZnXl%2BS7YcuFC8Yf%2BbQu/Lanldk32uvyOt7X5YDe1%2BRw/tekcMH9sni0jlZHD6WSoMbJrBx5Ox1OXrufTl6zmyvy5Fz1%2BXEheuy79g5%2Bekv9k0ienVedeaaRxutd67cUkYvTfpf7fpYpFLO6gOv7GT9phQvnS%2BDexxTVVUumFGOh7jz2fpHindO9Gb5goI8vcYpxzrp14ROfr8eJ6thF9Zjy4g65ZXPWlk7vFukzG9QjwYzwrL1fPIOEF9Mb9/KlAmsDGu2L44P63Bl%2BEEtrxIvQBTKLYvzmeCdxzPCbFydfcnYhwAEIACBGAHnuFJ/6SCVO19rwWMXJBWLGM8Z5TufjeN5wb63IiZncK5ufUE2e%2BjJEdPPOu3KUGx2f8em7SLI4ck5ES9f4Oy%2BW5DGuGSz%2Bhc9uScqxy/TWyxXlunV73Mr7Tftc74stvzRBbhL5lhGH0EVKyN2zhU42IuliZ0L83E8WwSsjdNgxui2eN9PlVa2b2QCALauTH/OpbHXMnUYOW26TD1V%2BsSuezqWxrjeTWG3o/Xm7HfumgviZn67utI3xoBzEIAABMYm4OYrlfOrqjqs3dsgGzbo71bF2iAs05ah%2BUe3tX7/wnJ7dkyQo2cNMqk42186JN955OXiTo7HzYvHD16UrQcvyraDF2X7wcEjqp48fFGefvOS7Hzzkjxv3r0xfDTVKyevyKun3pP9p9%2BTA28P3rdx%2BMw1efPsNTlydhDYOHb%2Buhwffs3%2B0fPXpTh35or8YOveScVP5/cc7KGDOMy0uLgog%2B/gSrE/v17WrfXfAZFyJoelDY8b1J8KchQBj%2BK9E4kATVGV55Qe8dCrE3/U%2BZ%2BQWoWX9UOn/4iDPJ/RXW2iv8vl7TWQ3atrRF57LRIo0Wvr5t1dDxmG4aVxHf4uQFHdLi5tIL/KviZ4FJUStNeDfHo9s3V1jvb5cXXOVMclCEAAAhDwnMaj/zRtEuRosDjKOaMKp3OdSEeD%2BmKt7MsQDUy48ke5jBaYc4SNpnZl11pI%2BrJaR91wsVeb16gU6TMN5YsV5Msc5RvLVOdcM9mWlpZk8B2UXewvbJENc/6z8xsuvFVMq%2BOo09S8i2RpYYPM2X/aR%2B7iMOVEy3A6pvqeda76bKNlqbBsZ5JADSdP4dCvDNZ5fcrvMxZK1fVBwrydc78XqX5blGJ1io0bK1DzHdv/Rx1h5aDHaL05vdLXnL75OLhjW8veN9ecHBCAAARaINCirbJ23rPH0d%2BejNixMsI5sDn46VOSAAAgAElEQVSu/P3L1NGDSwQ5etAIbYpw/1Ovycbte0eCHCbQYR5R9eQbF%2BXpNy7Js0cGAY4XTYBjafDujb1vmQDH4KXi5u6NN2xw4/1BIOP84K4Nc%2BfGiQs3ijs4TIDjyLkbcvbKdbnnkT1y40ab2gzKKl7irO83iPwbvUmNzuFb7ZDWcieu3wRdiiCLexTTiPN%2BWFne6dwgUKDCF1sXOEnVW0oeHEysvynPPn6rjpM%2Bp2f6mrZtEbywQYHAsW/lCM77LwBv2Me03jWVLw4v3%2BVTDrK4Noo9isvWUc4UtFT80OaNyJfvb/HyOAsBCEAAAnkCaQeOyeecOJXOGetgGnUg5SUwjl7jEDaOZ7cY6rK%2BwvmsC6Xkosst9rIOu6FyeY4hAVd2pZ5hVnM8Dq9YOclzk8lXj2%2By8ooLk8nmF24DBbckAhB%2B4ti%2B7fOu35adqe58sp1tGcG4sYv74HwhhxuXJedqqqyY7JybDQJ%2BPzCPQrJBO2MzF2SL95g/0/dK/SHQ0PX3SJ%2ByfSdThpcm1Z%2Bzdag8vk514tmar2rryVc8NspnFeyHReXsd/Ka1aM6SGrLyDVQKBTHEIAABKZKoL35lbtjz9zltkXmKufcEUWtjZ2TLRP%2B/kVK780pghy9aYp2BPnhYwty/84DxeOqHj9wQeaf2Sebn3hZHn7yFXnkqVdky1O75dFf7JHHduyRn%2B/YI1t3virbn31Ntj%2B7V558bq88%2Bfw%2BeeqFffKLF/bJ07v2F98du/aLfp82157fJ88uHJCj71wpgh9Hzl%2BXM1duyA%2B27pcLl6%2B2o0hRinmngLv7wrzLIncPRL2KPWdypTO7/fqdw3n0H/vu2qgDfqBb2sGf193p3CzI0Z7%2B1br5GuTltY75ksNf82gQRVnp8aB8K0cp75Bu8T6NzAvLfRG9fVtmJIjgJRvuqlyRIFsyAOPyRMT2qjDBtHmZX79e1q1bV9y5pI/tGjw2bbRfWZaVY8Grhl0IQAACEEgScA6plJPGOVNTTi0tvC0njpMp42wrnngydCA3chqZlxS6f/BX3ebeRKcmac2//LcMAzpVXJVvaluXVyp//Py48jXjG6%2B76uy4ssXKdWWlX9ocyzc85y/cdQEfbOc2bMk/gs2WETqenWxhH7FtHgbokmVldOBSvwn4Tp5kQMD1legj0VRD2z9Gg3q2T2Xe2eHShH1VK/DvTBqtw6aqpZNNXX/H06/Rz4L/exKOqcw1x8MFM1NBTnu%2BqWD1tSclBCAAgQkJuN%2BScN7RuGBr54frC3t8i9T541BRn82T%2Bc3x5tPZ37/GCkwvA0GO6bGeSk3fuP85eezlY/L8sSvy89fPy6O/PCqPvviGPP7Sm7L1l0dk%2B8tH5MlXjsovdh%2BVHXuOyrOvHZPn9x6XF/adkBf3n5CXFpdk4fUlefnAkrxy4KTsPnhS9pjvoZPy6qGTcuL8NTl58UbxNXdzHDt/o3gvx1sXb8hDzx6W429faEnPeVk3fMSSeZHzpC8M94Wq55Tuqn51xq%2BR0j/2rYN7NPjhZHfO7qbBiuaPq2pXf8u8ljPdMYrqaVl5Tnu9c8MrXx34rgxXbixYoOmrHofm2mOwZ3WbNMghrn1L8sX0LQmxKOu9YKD/HpjyvsdrmH9cnUvVcwABCEAAAgMCdvGQCybUDXJoutxCpC54t8hKL4TGqc9/Se/gX2FVEtnARcTxVc5bR2Y/h0s/8ULSX%2BC15kAbR77mfH0i9ffHkS1dunNUpgJ96bylR02F/zLMZCtdso7Z0bETl037fsSJnCmrVCcHs0PA2unR/lFSwrZ9zp6b12EMHfIlm%2BbGVNrmemmCQJ514IfnS3V40tbVyctSa7cmg1hZcS6DlKlrbnwS5Igx5RwEIDBrBJydn3huau28m1tZW1r37llbRju/f31tDYIcfW2ZMeWa%2B/4TsmP/W7Lz6GXZdvCCbHvtLdn%2B6kl5au8peXrfW7Jz8S157vXTsuvgafnlobfl5Tfekd1vvCOvHnlHXjv6ruw7ekYWj52R14%2BflQMnBt%2BDJ87KwaXB99SF9%2BXUpWGQ4%2BINOXr%2BhrxxbvCejh2vnpA9h98eU3IvmzqszSOqPKe1l2Ky3Sqnccf1jzqWnfO97JR2j7dKny/fqRAH48p3Dv94yuJsB/o3CwRUyTsaDNDyS/ppO2sfsnqNOvuN3qPtkmHkXdK6az2uKhXIGJZnZfCiHHqupJut37EwfWTtuvWy3tzNYR6RNrztKSeflt3JOLMysgMBCEBgdRDQOwmSDqrQYWWPRxcb1tmTcmo1RGoXQonyGtfnOb%2Ba/GPf1pP5d/NAtYzjOap7iwvJzD%2BNo1XXOtlQvjH51hJlJFFD2UbyByfsItotxIMU6UOr9%2BiYSGcKrmTLiPSrnLzZsoJ6OZwNAra9q/pYpK/ENIyVZ89lAiS2bzVw6Kcen2Xrq9IppkDmnCdj03hv7jcndc3%2BPiR%2BpzKScgkCEIBADwm0OL%2Bydt6fW7nyzdqj0k7bMqp%2BK2r%2B/vWQuBGJIEdPG2Zcsf76W4/KwtFzsuPNy7L11ZMy/%2BQrsnn7gjz8xMvyyJMvy5anXpFHf7FbHnt6t/z86d2y9Zk9st08smrnq/LEs6/Jk8/ulaeeG3zNY6neunhdTl%2B%2BUfpqkOP4hcFdHAfPvC8H3r0mrx59R57afWxc0Yf5nNO2ncdTjYqTc/qK54Tuqv5Rx7Jz6qeDGamAR9tBjo74a8DB3JVT%2BcwxT4ZEYmU4cPwrv7BsLWcY1FAZvACC3zu0zKYO/3x/8muo8W4SldHeFaI6hLoNyi3VneBaSjMizrBfaSAouM4hBCAAAQjUJ9BekMMtWioXLDXFSzmVBtmb1uctfjYsSPKJLzHZ6i6wrHOtaiGmlTgdJv633LIHOSbgqzgabdtlZx2VlYGsiJCN2715GVa%2BwpFaoXsb8kRE5NQyEqhrg2q/P8kbr1sG1jBvbwe62zRmnATvtyi9J6S4tkU2aFA89qNQW6eG3G3/r%2BE8C4q2%2BkUCFslrVg/fiRcUzCEEIACBmSFQMcdookfSPrrfoFtumcsHOmwZVXNrV2Ybc%2BomaraRliBHGxR7VMaff%2BkB2X/6ijz95mXZ8ebgBeMvHL0kLx2/LK%2BcuCyvnroi%2B956T14/fVUOvnNVDp%2B5KkfOXJOjZ6/J8XPvy9L563LywnU5ZYIbF6/LO5dvDL8ib5tgx6UbxZ0cS8VdHNfl8Nn3ZfGd92XPW9fkjbcuypYXDsnV96%2BPTcQ6mhOO6LELthnVIR6/S2Sq9fs6Fv%2B8N/%2B%2Bz33V4W3e5zBv01rVkjtO5/jdAC5jZ/rbuygi76Jw1Q/2rKM/k1bTGOe8lj3iqHd6G9SqW4qBXh8/yJF71JiqVhVUcG1cdA9fz5CTf/eJ35eCdFYvGzhxCey1EXYuDXsQgAAEIFCTQKWjyrzk1l84LNiX3pZqsIuQthw9bpEVfXRKw/qsgyrmbCspEjvw9U%2BHR8qO6Fg54Tmn4%2BQLMldWlFdYda1jV2aVfJPxrSVMkKi%2BbEHGyKErq8kdPrYg61StWoDbHKM7VWXY67fIhi368s5EfTZt4vpo7ZzpOwFr7yra1KardvDbMVs49OvYOJemro2xdcSCh1bWCp2ato3t/9UMwqKtvE2CHF59VXYyrI9jCEAAAv0j4OZEE9s0a%2BcjawPPdppAxzDePorDlpFJY3LZdM1t/2il0z9DkGP6zDur8e1zl%2BSvvjpf3FVh7uTY9tIbxcvGzQvH9e6Nx58evnD8Ge/uDXPnxvN7ixeKD144vk927DLf/bLjxf3yzIvuxePm%2Bonz14sXjpsAx%2BvvXJNX37omv1y6KodOX5aHnz8kp89eGlNHdfDG/7U%2BZqGlbO5f7TGH9IT1L5pHBSX%2BTj%2BUwtU/jo4qX8b5X9JWD5yzP%2BXgH6TU8seRTetKbZ0MxTtWUpgWVYZBMCAprwY2zJ0h69dJ8aimyF0flrd5jFPxjpe0buM6/G0dVY9X04CFeaxURFYlZ8tbN28DM6kYRqXMlpPhOfqYrsr8KhRbCEAAAhBoiYBzbqUWPOocSl0vCbK0RbYspIMFJq0NGCQWPo3qs/9urlgglYQsH1TJ497L0GRxVXMh2QKvsjZ1j2rK1wLfuhK5dHVlczlSe65tm7SdV5pdqI/fv1z/SZehfd4%2BWi4VsGtDHk89dntAwDpv0v1D7Dg0j5KKOJRCNfwyt2yQQb/KlG/TNxgnuTz2WqbOUOY6x7b/N5BzWK4dY02CHP5ddInfKyu2%2BcPAlgV7yA4EIACB/hFob37lAg%2BJ3yT7O5D53bJpcr8Vbp1S6/evf9B5XFUP22RskfYcPiVf2rhDDr57TZ47elmefu1k8ZLxp3cflWf2HPNeMn68eMn4L/efkJdfNy8YX5LdB07KqwcHLxd/7fBJ2Vt8T8new4PvG29dkLcu3RBzB8ex89fljVKA4z157tgVeWXpimx%2B/oC8fuxduXHjRnM9rBN43fCdArm7GobXgloW168r3ktQvJPAu7ZonOdr1xbO8OKRUDGv8aT1q0N57boi2OH8%2BEbWcv05J7cndrDrAgDN8rsAQzbfpPoXdxYMGJtHfY18bPnG4b5W1s0vSonR/DpZWwQK1tmXzqfldToNHvGVCF7YNlk7LHu9V2dZwpzDf374Yu%2BYXjYoYWQfyl8Odi3K/Hqv71XdNaEyr1kra4vAzGhwQiX36y4/Xm1RFoc819p%2BP1pOTmetgy0EIAABCLRJwC0eokEM61TKLUA8eTT93IYi2OHCHcO7Rubmhg63yEuVTTGav8qhpFXaBVKdR6wYGZYij7NyDIp/nHlBmqUF/Wf9LdLsToCaC0nVd1xeyqHxtqZ8LfBd2DBo87mU435E9pqyFd1lg8xt2DJ4vI5XTnGHktfX6v473StisKvtU7c/jhRQs0/beowzIDPWbLpMmpgMnOsvATvG5gY2s3QH3oJs2bJB5vTRUHVf5ireGNJxkBl/uQBAGpxnN8PAQVanoR1WPdMVjF6x/X96QQ73mzQYmyaQseR%2B2MQcGBtXtFGG8agynIEABCAwbQLeb0Py9oqaMlk7nwhylP7UlJhD2zLa/P2rKf8Uk3EnxxRhd13V47sOyA%2B3vSqHz1yTl45fkV2HzsiuA6flpYOnZeHQ2/LKG2/LnjffkdfefFf2HXlX9h81Lxg/IwdOnJFDS2fk8NLZ4vvGyXOi38Mnz4n5Hn33spy8YF40PnhE1eAOjquysDQIcPzizcuy88hleWL3MXnqlSNy9doYj6wqOcGHDmN1HCe2oRPcd/oOnN%2Bj5ZSdwV6rTFq/dU6P1unLEsrsSVCxO60gR17%2BpC4l/eNBB3W8%2B2WU9tcaR7wLYORYldo6GThwZZl6cuUlHf4Vejk5THBu/SCYkuivawr9KprZ079gEwsY2SLK%2BpVYFi8in5eSfDbfYCepc5COQwhAAAIQaIuAc1TFghz2n/B1nTeeE8r%2BK91z0Om5WF1Go8b12QWScUDV%2B0brrpI7dOJV4q%2B5kKyqd6hTVOZKGXIJaso3Kd%2BSfnUd8zVl8/tLpu1NcMX3SeaojFyz8teVfaSEmoE7p3M2mNaGPBERObWMBGqPsTnZ0MApZW3pcGwkTbjtU4nAcwaNqyMYH7V1alinJ2tSn4S8uUBO7lpRnFdv7nemfTudUIbTEIAABMYi4OYaE9sra%2BfTQQ4jorWv5rcoNNy2jKr5e7Pfv7HQdJiJIEeHcKdd9L889II8ve%2BkHDt3XY6de19ODN%2Bt8dal68X7NN69fEPOvndDzr13Q85fvSEXrt6Qi9dELl0Tuex/3xe5/P7gvLl%2B8aoUed69ckPevjR4X4d5ZNWRs%2B/LwXffl31vX5Pdb12V3Sevyt7j5%2BVHW1%2BVsxeuNFd/0iCDqXFxXtav03/Ae876tWuHd3hkxOq4/nXFezQy9Vde6nmQo%2BpODtVP28gPBKxdKwWfIo1z3OeCEuIFFHLprCO/4qXnNl0kYFLvTo7hnRJD/fyAw9rh3T2KoGrrAhPxYFE5v7lTZHgXjDI1PIePTnNlcSdHmRtHEIAABJaDQC7I4a6F65KspEsLssX8s3UuWLTMmUVK8C/YUkFj1Fd7geRkSS/svH/kqtPcyLwQu/ujJHjkoMFCcmxekWprn6opXwt8u7yTQzLsBnd41AYST2idm4ETN546frZuGUPW2bFWt6y4JJztI4GqMTY3J0WgrmmkzvYVY/vSTqhkoKIOK6%2BOkl2t0knta%2B07U4bCePVlx0lEdutoiwSsc9dcUUuyYO6qafy75kpgDwIQgMDyEqg596sjpLXz6d%2BXQTGuThMkLt3Va8twc/RSIHnc37868k8xDUGOKcLuuqpfvn5C/uprm%2BXmuZ9O5funn/%2BZfOQL98vHvvSArPunTfIXX94sf3vPVtm8c1Euv3eta3UpHwIQgAAEIAABCKwcArr4iDiFOlFy2vV1ogSFQgACEIAABCAAAQhAAAIQEN7JsdI6wTcfeE7u/Pcn5Mv3bpd/2rhVvvCjx2Xuh4/J7d9/VP7hXx%2BR/77hYfnMd%2Bfl09%2BZl9u%2BbYISD418/%2B6eh4prJs1nvvuw/P2GR%2BRz33tU5n7wWFHelzb%2BXO788Xa5674n5Gs/e0q%2B%2BcAO%2BdamZ%2BSe%2BefkyYXD8v71MR5VtdIaAn0gAAEIQAACEIBAbQLun1elf%2BjWzt804bTrayof6SEAAQhAAAIQgAAEIAABCNQnwJ0c9VnNRMqDx9%2BRv/6mCUo8Lv%2Bw4TH57He2yGe/87B8%2Btvz8ul7Nsvf/ctm%2Bbt/fkj%2B9lub5G%2B%2B9aD8zTcflP9mvt8Yfr85OGeumTQm7d/982b59L9slk/fMy%2Bf%2Bc58Ud4/fHeL3P69x2TuBz%2BXz/9wm/zN3Y/KY8%2B%2BKu%2BevzwTnBASAhCAAAQgAAEI9IaAfSxI1W3oLUn8/7P3LlByHeW9bwdCDLmHk5t7OYTg3JMTZ3FuSMjD0coJNJCTOGQ5OdgGHJxAIBhjaMD23OiQkISEmJdN%2B81gjI2wLbVsyQjjlyyrpbatp23Jkka2W2%2BpNRrJerXez9G8pPnuqr27vqq9d1XtR/fM9LT%2BvdZevR9VX331q9q1d33frqrxTq9FakMMCIAACIAACIAACIAACIAACJgIwMlhojLJz81%2B9jW69ZGlVJy1hG5%2BeJG/zVxEN3nb83TTTN8BIpwg3xLbjNBWes5zkIjr3yn54UWcm2cu8jbPsTFrCd06exndMecF6v7pcrr/8SV06NChSU4O6oMACIAACIAACIAACIAACIAACIAACIAACIAACIAACEwmAnByTKbSSqjr6TNDtGvfQdqwZTut27RtDLcardtco/Wba9S3azcNDGAUR8IiQjAQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAIEWEICTowUQ21XE6OgojefWrhygFwiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAQGcSgJOjM8sVuQIBEAABEAABEAABEAABEAABEAABEAABEAABEAABEACBjicAJ0fHFzEyCAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAKdSQBOjs4sV%2BQKBEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABDqeAJwcHV/EyCAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIdCYBODk6s1yRKxAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARDoeAJwcnR8ESODIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACINCZBODk6MxyRa5AAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAoOMJwMnR8UWMDIIACIAACIAACIAACIAACIAACIAACIAACIAACIAACIBAZxKAk6MzyxW5AgEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAIGOJwAnR8cXMTIIAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAp1JAE6OzixX5AoEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEOp4AnBwdX8TIIAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAh0JgE4OTqzXJErEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEOh4AnBydFgRnxoYpD2HT0zIdvLMYIfRRHZAAARAAARAAARAAARAAARAAARAAARAAARAAARAAATamQCcHO1cOil1O3v2LC1cvYk%2B/725dMMPF1i2cuO8%2BFdb1w/LJDdxXuzf8MP5ke36e%2BbTdfc8Q1/%2BwTP0pbvn0RfvnkfX3vUUffq2x%2BhnS1%2Bjc%2BfOpdQawUEABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAgGwE4ObJxa8tYQ0ND9NSyV%2Blzdz5NhbsW0rV3LqTPe9sC%2BvxdC%2Bjzd6rt2jvL/rm7xH%2BZvsDbfPr89%2BbTF%2B6aT5%2BX253P0OfvnEfX3jmPrrnjabr69rn06Vufor8rPkGf%2BO7jdNVNj9HHb3qUHnl%2BDQ0PD7clGygFAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiDQeQTg5OigMhVOjseW9NBnb3%2BaPnPLfPq7786jT4mt%2BDR9qij2xf/T9OnvzqO/K87l40/dMpc%2BXZxLn278f%2BqWp%2BjTtzxFn7rlSfpU8Un6O7F990n65M1P0Cdufoyu%2Bs5jdOW3f0Yf/cZP6Yob59BHvzmHPn7Tz%2BihBSvh5Oig%2BoSsgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgEC7E4CTo91LKIV%2BvpNjDX3ujqfpmtvKnqPjM7c%2BQ2K7%2Btb5jX%2Bx/wx95rZn6Orb5tFnbptHV98%2Bjz576zzv%2BOrbnqbP3CZGazQ273gu/f2tDcdH8Qn6ZPFJ%2BtubH6e//vbP6GPfepSu/PajdNXNj9H0ecvh5EhRXggKAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiDQHAE4OZrj11axhZPjmRdfo0L349R179N03Q/m0nX3zKXr71H/1//AP%2Bb/xvUbvP%2Bn6IZ7nvLCX%2B/9i/2n6PofBLfrfvAUyU1c/4cfipEjc2j2ghfh5GirGgFlQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQKCzCcDJ0UHlKxYerx88TN98YCE9sWILzVi8kUpLNtLMJRvpoSUb6eGl/jZr6UaavczfHlm2kX6ybAP9ZPlG%2Bsly8e9vc7R977oIs2wDPRLafrp8Iy1/ZTNd9a/TaNu2bVh4vIPqE7ICAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAu1OAE6Odi%2BhFPqNjo5S/8AQ3f7oanpp52l6ZvMJmr/F3xZsPUELt56gytYT9Ny2E/S82GpiO97Y9P3jtIjPH6fntwW357YdJ7kt2X6cavVTdPVNj9K%2BfftSaIugIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACINAcATg5muPXdrEHhkbotp/10Ko9g7Sw1k%2BV7f30rNh6%2B%2Bm53n5atKOflu48Q/VqhfZWF9Oyvn5a6m2naWnfaVrW5/%2BL/aU7Gvvif8dpWhLaFu84Tcv7%2Bqnv8CBd893HqV6vtx0PKAQCIAACIAACIAACIAACIAACIAACIAACIAACIAACINC5BODk6LCyPTM0QsWfrqJVewdp4fbT7OQQDo7nG06OtX1HaGjuP9Dp%2BV%2BnVX1HA04Oz7mhOzqksyPk4BAOD9/JcZp2HBmAk6PD6hGyAwIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAKTgQCcHJOhlFLoeGZwhG7%2ByUpa7Tk5GiM5GqM4hJNDjNo4tPYpGnn0Ghp%2B/IvUu34FLdspzhtGcmgODtNIDuHoeGFnP/UdHaRri09gJEeKckJQEAABEAABEAABEAABEAABEAABEAABEAABEAABEACB5gnAydE8w7aScGZwmL798Iuek0NMVeVNV6VNVfXa9l105ul/opFHPkUjj3ySDi%2B5l1btOMxODuHsWNx7iuZtOEFPVo/RE68eoydeOUqPrT1CP%2Bs5TI%2BuOUw/XX2Ifrr6IM3fcIxe2tVPrx8fpi/cNhdOjraqCZNZmRp153OUy%2BUo311r%2B4zUuvOerrlcgcptry0UBAEQAAEQAAEQAAEQAAEQAIGJJ1AtdVFXVxd1FSuEia8nvjygAQiAAAhMdgJwckz2EgzpL5wc3ygtZyeHWI9DTlW1pK%2Bf9r38KA0/eT2NzPpbGnno4zT4%2BHW0ftOGwFoc5c0n6Zan9tG/zNxJ//hgL0398Va67oebqPD9dfS5u16hz9y2mv7%2BllXUPW8HrdzdT3tPjtCX7nwGTo5QWeAwK4GJcXKUC76zIl9I56qAkyNrOSMeCIAACIAACIAACIAACIBAJxOoloqeI6NYqkayCSdHBAlOgAAIgAAINEEATo4m4LVjVOHk%2BPr0pbRm72BgFIeYqmrt9j10cv436NjKh2hwwY00Uvoojcz4CO1b%2BTN6qe84j%2BYQa20s2HySntlwguatP%2B5tT687RnPXHSPxP2/9UZq//igtrZ2kNXsGaP/JEbq%2Bu9xSJ0et3E2FvPxC3v%2BqP5fPU6Fco7hv%2B5XRuREvZ/rPk2uQQDPpU61G5e4C5RujEcSIBG9UQr5A3eU47e21Ss9X6hEOtTIV8slHRjSVf3sWEl6ZCCdHmQpcT9KNyFDlki5eQhgIBgIgAAIg0EEE6hXf2CO%2BXC1W0n%2B3yvHDxqJ6naqVEhWLja9ixZexIo1iiSrV9OlI5Nb0iKherVCpqPLjf41bpFK1nvCL3DrVq2Gdi1QsVSiTyvUqlYoJuY4RL8nN%2BJ9Gv5bwNWphPplCN64TjTrmlXtkv0gZqjdRvULFiCytThdl/XDU6ZCM8K1iBmA6W6US65IxPyaxODexBKolfyZiEjoAACAASURBVOQAl61Wv8S5YpFKlaqxDVN1P0N90OploO2P00fTM1ldFu2q3zab76UiFUUe0zaymv7me17jGBiVod9HJQq7OeDkmNjbAamDAAiMPQH17Ej4jmpSiZ8V0XY0GNzR5rIMrb3WnjGu518wjfY%2BgpOjvcsntXbCyfFvDyz2nBxiFMezcqqq3n6qvbqchp/sog3barR34ws0Mv0yGn7gr2jgiX%2BgNbW97OR4rnaKHnn5CD249CDdv%2BQA/XjxfvrRon1033N76b7Kbrq38jrdV9lFT79ymF7ZN0D1U2fpf//wWdq3b39qfaMRlIFbOgci/3m3MblcMDk1wudsTo4m0y8XGlMXhdNTx2KkQHpXh26ET%2B6sEHxr5QLlpaPF5dnxCqPJ/EcLNMMZpUNqZ06G1GQUjOSQJPAPAiAAAiAwNgT0jkeWjo6KHzB2xXVahLOjZDbaufNpSY/qVAk5UyJGr2JcJyxOhjDCubXTr3rOkkZHLWBA1APJ/THjJROI/qfSryV8ozrYzqTTjYiNknrHOLKfwQgsFExhSLXW6bCMNBVJg6QbJbq6MuZHk4fdNiGQ4P732zNDmWt1K7adCWVX1aeQ3MT6dMW0iQ1Hd%2BReNBuz0uqf5t4MTz2FkRyhyoBDEACB84iAepcWz5bUba8kxc8K1/u1/m4detYIOSzD/FxQ7/KGuFKPSfAPJ8ckKKQ0KvYPDtPX7l/ETg45VdULvcfo4JIf0vEld9PLvYdp5c5TNPjoF2h42odo%2BEd/TjtfeZ6W7zzlOTrEKI7ik/voq6Wd9JUHe%2Bkfpm2j63%2B4kb549zq69q5X6LO3r6Grb11F9y3YSevqQ3Tg1Fn69weX0q7d%2B9KoagyrHBShURve6AhtZEe%2B2%2BooYBnCmVCrWTeTAhw3lzH9hpPDc2RonoxarczrTHijOmKdDUHt1GgB31mSxPjvj8ZQzpUk6Tad/6DaGY8mxsmRUVlSZeN2vmWVj3ggAAIgAAKdQUAZufzOReqOjuycBL6SVZ0Wz%2BirfeBer1cDzohWpaeM3KFRG97oCG1kR1hPLsZgJ0z/olh8gay%2BPo7vZPlfLAc7a7H5bHBsOS/On9rJol/zfFX6rr0sugl5rJ9wnNXr1s2VtvUaG5GL3gikoPyqP1pJN%2BKaHBgsQ9aL%2BHoU1SdolICTI0po0p6R7ahwXIlRZ1odroZHp0XaMK3tilxzEXHEc%2Bij6yb27T9Nvnd/NEY8VYP3aLXq30NiBF5sOxlOTLuvvNF6Grewnk5VQ3K5PUnFMyQEhyAAAiDQpgSafveX%2BeJnhc3JoT8HLO89LCPL808q0v7/cHK0fxml0vDUmUH62gNRJ8drW2o09Nh1tO/lx2nTlo3ednzpPTR875/S8D0fpIE519LqvsPe2hxi4XExVdXc6nGaWz3mbfOqR%2BmZ6lGaXz1K5XVHaOG6I7RyxynafGiYDvSfo%2B8%2BspJqfbtT6WoK7BnZHQ4MZVDOkW3pBGmoT%2BIICOvQdPrlbsc0WMp4n26R6uAojjhnRU1MlcVTLwknR56P45g0nf8w0EzHilOcvpnEtziSqpNwcrQYLcSBAAiAQAcRCBtN037NpTovEeNUteKYGkjF6%2BqydYxMmFW8cHqeUcphkNI7dCYbtPqSzNIJ04xpXUYB4oP/kuYMEcbsIh%2BH9Y3kbkx4BVNpRr%2Bm%2BQZViRw1o5sQJo2SsZwjKSc4wWVvqRueCFU3xVeHkSqiyeDp2yKBYnSRhgBhDG4YjTNNvxWTDC5PAAFZto7ROa42TF1z1dFQvrhOGuprAn1C0kKH/jR98gtc6winUKzUh648pBamIsj2JDz6Q4XAHgiAAAhMVgLNvvtr%2BeZnhfldnttS03uRFMMy7M8v9YwzPK%2BknDb/h5OjzQsorXpHT56hG2cs8UdyNKaqWtx3hg6umOWtvzHwk89S/5zPU/9PrqWBmX9Lw/d8gIbvfp%2B37V09l5bv7KeFm0/Srd7C47von6b30lfu30Zd922m636wngrdr9K1d/bQ525fTQ8%2Bu4u2HRmmg/3nqPuJtbRp%2B%2Btp1Y2EL3fbR2j4gZXB32wAb85A3nz6kSwFTiiDuG26rEBw70A5bbp53Qhz3kVwlX/PGeJNjaXO2eP56Y51/qO5M51Jrq8p9nifU2UKJ8d4s0d6IAACIDBZCMjOR7FS4Xn%2BUxmJ2cBk7ty4OKgOi71TE4nvSK9aqRjnq1cyVKcumkfNQO0wPCudTfnVZPBUXOpcNE2lWZI9lXYKXgHBShdvagJvqjB1Lk6/5vgGFDEcKD2y6EbaVFpx%2BTAkHn%2BK610Mew7XRRFHGF8rUqmx4HFmB19JOtNi9InPGUK0C4EERh59aqZoPVftW6TuWfKo2hRDe5ZEH4tccVo%2BW3yHn2u0h0NIkkt8X7XW8MX6OxznSdRDGBAAARBoNwKyfcv87q9niJ8V0eeIesbEfEDFMhzvNFpbH33%2B6Qq17z6cHO1bNpk0O3Kin75RWko9ewdJTFW1qLefVuw8QUOPfp72vjCL1m7po54tvfTKlh1U3byVDs37Ng13/xEN3zWFBmdcSat2nablff20aNspen7LSVq89SQt3XaKlm07RS9sP0UvbT9JK3pP0cu9J6m69wxtPzriOTkeXLiBqlt3ZdI5XSRlAM8Zh3Ko63EG/XTpytBKvjl9Gc7yz2t2JDSIy/De6JY4B49IU%2BiXp%2BB0WUrn5pkoWZnyb8ESPK3SaF7foOSxOIKTYyyoQiYIgAAIdBAB2anwjDjKQJam8yA7SkmNagF6Mv0UIzmaSk8zhEf01TpPDh9HYG2GaDhhqBfTsYipWGROlfE%2BDVcZO/CfgVcgvpf/MdTPxTeoiOGoWXYt5GzQThmXHR1wL57SI/IFONcxISPD/aaXf0CWSWGcm3QEuHxddcxdb7h9TNSmKlmR9lDAS6SPhTLHjTFsWaKnOs33ApwcqbghMAiAwPlJQLbPTbz7B8BJeeHnDp9P8BzgsNmffwGd2vQATo42LZisau0%2BeIJunv0i9ezznRyL%2B/rpQM9cOjPrU7RhyxZa2tdPS/pOe//LdvZT78vzaOjeP6fhO/6Ahu/4fXq9upRW7e6n1XvO0Nq9A/TqvkFaVx%2BkjQcGacuhYW/kxvYjw9R7dIR6j43QjmO%2Bk2PO8m20ZlNfVrVTxIszgCtHgNEHkiIlc9C49M2x5Fk2iDum5JJhicJ5UcfpjP/N6az0EXutkeWvF6KtsZLLUV4sKO%2BtY2JOg9nlXA6iJIzMYeSImVyislFUTHp5i73n9fVQhOOpu5E/FVfscbrOfAXZ2xxMNq7dPthgwqYjsXZMIU/5gO5%2B2SSWYZKLcyAAAiBw3hJQBi7fWK%2BOkxvjZRxXp8QOmL/wSvylbHPpOb/25w5W9Eu0YA6kDgk6bV5EZfROzjWYojxKz0vGdP23Tj8nX89m6q%2BLIpxAyX5pdFPlklh8MiX8UGxIjavrSme3k0P/0j2uzgkVlFyvHiXWJ00mEXZCCXAb5KhjXO4Wgz7LsFzXMxgXlq879NHl8b6qq%2BlGKrGAdDtxTBzS2ClkeAa5ruki/TWEtDWfxCi%2BYslbV0UPh30QAAEQmHgC4XcldZz5HZWfFdq7jNYuG53oYRAsw/G80WSOyXteWKcxOIaTYwygTqTIHfuO0m1zVnhOjiW9J2jd5m009PAn6dTDn6ae3gO0dMdpf%2Bvrp2V9/bRhy2Y6XfoEDd/%2BuzR823vo1OzP0fpdh%2BjVfQNU3T9IGw4M0uZDQ7T18DD5zo1hz7HRd2yEdh4/621iuqoFa1%2BnF17rHYesKwO12YkRd71ZFZuRr%2BImcVKw8Zszmi6%2ByqnZaaCup9lTOrBaaaILx03IgC6m1dK3Qtmib62b1xaxpi1HvgiZNmcFywlOGca8bfEs%2BQw6OZTuep7Uvr%2BgfUCUprM1XyIC621ajyYuXQcPT5kalQtBp5PSuVE%2BTuUCOcIBCIAACIBAgwAbcLinkL6j05zRfbzTExlXaXK2GzyS50Uz4IWFGGuXCp%2B5A%2BnJVbo3JyesZKv0E3KVjhE0Wuc0%2BWLZaXRzpB3OcpZj1t/RAffkKp0jHfuwDD5OYJDmsI30w8dZ8oQ47UUg1shTV1NAGYzyfmbUfRCpf6Hc8jPAJitWn5BAech1M6kjWEbM%2BK%2BlF2l3YkS6GLiu%2BWK1e91bH0eswRTabGxj9MJlEAABEBgLAtyucWOpnhmZ3y35WSGdHEpm5GMPW6ZYhu0dK8nzzya8fc7DydE%2BZdESTTb0HaDux1fRK/sHafO6NXRq4U00MOfzdOZn11N95Rxau2WHt7i4GNGxovcQ7V35GPXP%2BRINTv8YDT74URqc%2BQk6/NLDtHX3Idp0cJC2Hh6i7Uf8URu%2BY2OEdp04S6/zds6brmrl1gP07BrvM/yW5MMmRBmUgwZqFV4Z4cNGWjFSoNmv0ePTV5rwXq1GZW0xcDGVVOyPDd/6qAWVtyROEpWGMoCni6ckyL1M%2BZeRtVEgYjH0QneZ9Brjj0IIOjyC%2Bqp82EYysKPCc5yY6wjnIeTM4Lih86y%2BZYfl5QpUKAj9fUdGOG9qMfiwXvH5EklzOhH9tPiRtIN1Lwm3yIiTWo28kSndCeqthRFOgwAIgMB5SYA7E7JDIiioTkmyjo4Kz32lJDDrdapqi3Mn/6o/Y3qaTuzIMCzsG%2B34aRFDuxw2kQFLGcKScQ0llplXSI71sEn9NLkuviJYtbEORfIyT6Obqh9hQ2NLvqpmQ6qtA94AweEMBl6%2BpmQkrUscTt5sBllaUWB3MhLgdlnVD5mNupjerCgN6Hq7LUOof64r4alDVJBk7b1Dn4Co8EHWeGE5SY/5XkjgLAzJZFaGttx1TR9ZJZy2pWpdWw8q%2BIyLczaFVMIhCIAACIwNAW6b9WeIenfK9I4qNA3IVe9tXUU9nZgssYzmnn8xqUz4ZTg5JrwIWqvAqk276d55a%2BmVfYP08pbX6bWNm6jqbRupumEDrdxep6V9p70Fxlf2HaPNG9fT1s3rafuWddS7ZT3t3LqedvZupVr9JNUa01JJ54ZwbOw%2BcY72nDxLe06K/3O0%2B%2BQ52n/6HG3de5KeeHFrazMTlqZ9yR40fmsBtTBhJwcf87RIWrwku5psa/pCjhaO0wxMxxSXmHJmBP0h6rwz/Yh4ZQRPFy8kSMtXFjlspM%2BFjfx6OkpXwS6cDsuIGPqFDMlHTbcU5OenI50ZYdnyvHUEiK6mts86ORwrjZR54fhwGkqG7tTSEtEcRGG9A3F1z4oenZ1mUfYqvhghYhOgC8M%2BCIAACIBAPAHVoZH2Uj%2BOOp%2Boo8MdkphOjGaA0o3PwvBc5XUr4rUOdqIShA8H0fQw5Y8NWkEoYSneMYc1GMaiEVSHz5RuJLymZ1O8IoJtJ1LqZxVToWLjK%2BZE%2BbTJCZxPoZuFm87Q63CnqXO6Liw/2gFXwZS%2Bxml6TDJM55RAf88UxnQuHA/Hk4sAt6nSmRH999b7icsV1w2H0Z/TctRnDhPVI3BfhdrMOGdnnPqpr2v5DegVHlXhcm4b2nJXO6/y6HiOMT8H49SZRQQQAAEQyEJAveMHm2x1PvO7G7d1JSqV5PMipm8QzgLLkPGj/4mef2G5bXYMJ0ebFUiz6ix9tY%2BmL1znjeR4Xiw8vqOfFu/opyU7%2BmnpDn%2BKquU7%2B%2Bml18/Qy6%2BfoTVi7Y3G1FTrDwzSpoNDtO3wEPUe8dfb2Hl8hF4/MUK7T/iOjb2nztG%2Bxib295w6R96544M0a/GWZtW3x9cM7GEDcThSTXx57m3%2BFW%2B/3E2FvD4dj82YHJbWOE6Rvs3J4Tk8PAeLy5CsGfkjFnppxI8a/y1aS%2BWpuzFFVNhA7o6nXU2Tfy2a2k2hu5ZWRF%2B%2BFjXWM/dCWY16cDAMX2qFkyOirwLg7SmHQkh/zpdpKirdcRaKx44dSzxOX9WroI6qXGyjPFgEdkAABEAABBIS0IywwV5Osi97ORUlJ7ZT5DJAeY6OJFbnFOmxjtqOroPBmBX4KjfCRZPT2HUZv6KhU%2Bqu6xo20iXmFdXCfialfiZBus5GvqZISc6l061er5O/%2BbK9/WqFSkV9vvyUHW%2BpJufRZLCsU71aoiJ/aW8YxSHkGGWoPNq%2B%2BGaDqs7WKEsqi/9JSSCBkccz4sc6iLU6pdcZhhJ3vREwqT6hNpPrq3MkCSvT/A7fC1GjWNDpEb13XW25/ZoyCoayHsqL4hz7nAzFxCEIgAAItI6Aaoui7xmqPcvcTpmeFcZnjyNHJhnhd2BxHPv8c6TRBpfg5GiDQmilCk%2B9sJnmLN0ScXIIR4eYomr5rn56adcZWrXbd3C8IhwcdX/tjS2HhIPDX1RcjN7Yxc6Ns74j45Q/akOM3Nh/etQbwSEcHLtPjtKJwXP0wMKNNDraytz4srypcuS6DcYv%2BJOnqYzMyR0FTafvTfcjnCxqKqagoVnp7za0K4O0Lb6SpO/ZDNx6GPt%2B0/kXoh0jCaIpu/JpvybL1nNesNMg5MxiPULn9QXAU9YxmW4uduFw3VkRdkqoMjI5GziNqGemsZ5JND9hrly3dBnMI%2Bw8CcfGMQiAAAiAQFICdqONkJCio8NGpajRKFYXYYj2DM/KIBXbsWoiPc/4LDtK1k6XqwMYzZGbYzi8kh2bz3BUcZyFl0mO9Vxz%2BiXja0085kJzuunCleHV4oDQA5v2uQ6qehs0oKrz1nJmGaH7hjv3ofOeHuq%2BDBhUbbJMuuPc5CCg1wMx/RE77USbWaWKNs2fqHuB%2BhDKoarvhjrFdcctQ42eK3qLaAf00XWzpp3RoRiSF3sYyE%2BIm65nPepQd7Xl1mtcTvH5YxmuworNIAKAAAiAQHYC3A4Z34HVO4b13SUuab1N1NrjxOtxCPksw/C8Sfn8i1N3Iq/DyTGR9Mcg7dnPVempl3u96aqe7z1N5ZVbaf6ydbRg%2BXpa%2BMJ6qrywgZ59cSM9t2IjLVqxkRa/vImWrtpMS1dtoeWrt9DyNVvphZ6t9GLPVnpp7TZvW7F2G8ntJXFtzVZaVe2lPUcHPefH7lPn6PjgKM1avI1ODwy3MFfBxZDFWhauMRDJEtaMybHG7Nanz8bqXNjIra25YDWW2w387ryrPKd1juiLUTfDX%2BU73hhPjqmZRD6NxnqOI431kpU89gmxHrqhvwGP5cbWiyBtlmktNz281MvgZGOHQ5iRihNWW6WtHGj6FGnGfU2Iih9OU9cZ%2ByAAAiAAAkkJKKOXzTCTvKPDHaYmDTdKJ7exLVt6YpFC9QV/3DD3NGmkCauPEsncgWwUclJeSeuEHy6rIyEd33Q6ydBZdZPx9X8lK1XHW4rQO%2B7SaRb6L5Yq7inYWEbY8Kx0C9cRLvOwccIqSyqM/0lHQDfyRO3xjeyoumKcEk1mmutH1KnHdSpupEUifWSC6l/JD9dzFaale1pe0z6SuC0P31%2Beza3huAxdU/lTjk2bw5PPp1WspYAgDARA4HwloNqr5t/9rQz5WdFIg4%2B7KDpyxCKF47ieGwmff5Yk2uE0nBztUAot1OHep1bTc%2Bv20pq9g7Ro%2Byl69rU99Owru%2Bj5V1%2Bnxa/tpqXrdtPy9XvoxQ17aMXGPbRq815as2Uf9WzdT69s20%2Bv1upU3V6ndb11Wt97gDbsOEAbxdZ3gDb1HaD9p0boQP%2Bot4nRHHtPjXrrchzqH6VnVu2kfUdOtyg3ZW3kQ77pBcN1pZIZdscqfeVwCHyxzwbuqPND6a6M3WmdFemnq2pt/pl5IgeCYmTMJ7PSDPNy5IYmXzotlAwlV7PzM14ZPm46NI7Q2OG8NevksE09ZcpvJO0mnRwat3D%2BcAwCIAACIJCQAHceXM6EpE4OGc7VEUmoF2kdFqsRKEt6%2BiK9/ldhcRq5jF3BuEl01mOo8GEDth4q2b6SlbjjGCtYyUyuX3q%2BsWoYA2TRzSjIOxnf2bfHDUw1Ff7K3hEtcImNsdF7x6ybrPtRQ3VAH6tBPJA6DtqdALfT0foRUJ3rkas9Fx/Gmoz06p6KbUOS6hNQTv8i161fOFrm44Q8TPLNjPyQtmvqXoWTw8QU50AABNqEALfhrrbY8Z6RNBucjnKkcPvZZXh/McllGa15/pmSaIdzcHK0Qym0UIfiw8toxbZD9PKeAVqy4zQt2XyIlm46QC9sOUgvbT1EL9cO0erth2ntjsP0Wt8RWrfrKG3YdZQ27T5Km/cco617jlNt73Havu8E9e73tx37T9COur8dPH2WDp5pODn6R2nPqVHaddJfp2PFpv20ceeR5nMjDdZiiqqxML46jMae8mOcftSYrozvxi/v5VRdxv/gSAUzfCVfGfzNIccq/%2BkcAXH6KmePdFZI%2BYH8yXKWdYjLVXOOaBii5aJddOzKtBNNV2VzZDTksw4yY9rIlUDeGuE5bZlHh56mSxw/kYPGJAHnQAAEQAAEJIGKtlYAf1ka%2BgrdfD7a2WADT%2BjrVplW2n/uCFnkpU5PM3il%2BWKf04n7ujnNtF4eDGVUTO5EsFOM42WPabuSUr%2BMfG2pu8%2Bn1M0tTJsOQXXE46Lwdc539J7gMHE7ThkGQwN3%2Bg36OmXFKYLrbUmAyzuujhnqiilDJnl8zmX0agjjsHH6hBNX%2BsU6UsJRsxzzvZAgTyH5rvbUdo2fFZZnVigJHIIACIDABBBQ70/m93uXkzZlm8/PCv1dJZi%2B9TsmSYZlxKWtni%2BteKeWyY/XP5wc40V6nNL5lx89S9U9J2nF6wO0eNMBKi9fT/OXVmnBsnW0cPk6qrywnp59cQM999IGWvTSBlq8ciMtFVNWvbyJlq3aTMtXbaEXVvubmJbqUP85OjwwGtikk2PfaX8Ux47jZ6n32Aht2nOUXtiwt8mcKgN2M9MjuZRwG3bHPn02ZLNhWhn1J97JMUb5lw6HXBKnjKZDt3mCMsnQN/xLfmHZUk7DqSF10BwIej2RMtM61tz1SU8hwdokUkd2Osg8hPPWkBsJH0ov7pDjW%2BTHxcd1EAABEAABJtA6J4fqtMR2WDh1947NkOTHSpue1vkpVSnVB%2B5JO1hsUIvriMl8qzy0okPm5iXTTPOfRr8m%2BKZRicOm0Y0jWXfYOBnryDKISF3u6WWwfp7xNCbvrdDHoCJOTSCBpG1QYkerdr9W/NYwVfuRWJ8oM04nZu2QaMwMZ/heGB8nh5o7XjfoZdAbUUAABEBgzAiod4iJcXKIjKlnUFdX0bmOlGpX496tlcxWvFOPGX6LYDg5LGAm6%2Bkv3j6Xth0epJdeH6AVr/sLjPfsOUOv7hug9fsHaNPBQdp6aIi2Hx6mHUeHaefxYdp9fIT2nBihfSfPUv3UOTpw%2BhwdFM6N/nN0dGC0sREdEc6OM6PeSI66N4rjHO08cZZqR8/SxkMjtOtQP1V6%2Bmj47LnM%2BNjQbDFEZxbMEaVB3DxKZFzT1/MoFieP3aTBW6znUObwnDXrjsqzaTSAHm3M8s%2BjKAxrUegKiH02vDvCyjDCUSRls9NIClT5Fqhl3mwM5PXsTg7XVGO%2BTvFpqDL2qoeeT5kt/V/mPedgpYcP7zcbPywPxyAAAiBwPhMILb5qXkBW7zhUedHbADY2erXKuKN1wkxek5TpsWHNJCuQEdOBnn%2B7eyRoiDbJCZ9TeWy%2BQ6Zkte4LaSUzTr/m%2BIa5JDlOrlu8NCUrzQgflsuG1LgOOMeI7sTJ4OtdVKpUqOiNtrKkx2Et16Op40y7E%2BD2LqZMOVy8UZ/vWc9xlqyNY0ycTow%2BHEHb4fopvhYuudeq0aJl2tXSStv0B/kEU7de09KLazODEnEEAiAAAuNIoFXv/nEq87PC0DfQ2kvh6Gj426MSWYYjjIjF4eKff9FEJv4MnBwTXwYt0%2BDIyTM09Qdlb1SFGMmx5NVd3mLjYsFxOXrj%2BZcaC46v1EZviJEba7Z4C4r7C45vpRVrxbaNVryyjVa%2BohYeF9f3nzrnLTguHBzbj47QpkMj9Fp9mPoOD9CCNX10%2BMSZjHmSBt6x%2B6pcfXVvMkg3mX6tO3btEJV%2BljxK/dIatJWx32bg9wtMys%2BiW1yRKx1yrtEcNamDv8aEVV82zuepu7tAYgSMKSzzLnSTvy6JPW/xDghzHjmNuOnVpMPCoquUzvIKZXbM6P4wGU7%2Bs94uriKwYNtdltH4P3F8joEdEAABEACB7ATiDWDS6JPIsFOvUKVqdxYIPdlhYOn4pEqPvxiL6SA5AMXpo9ZBSNO5UsZ1J7cW8HJkzXEpoX4t4OtQwnIpqW6W6NppVbZpyi4gwO100IJad7mzb6%2Bjss7zl5c2q20CWVY9cKE9CbDxxl4/gl/GGgxK4ZzpMisl8uuVS74mQI/rbsq1SGpXv%2Bf8r3jjhdSrJSpZrWBKdmCP74X09zbfb4appxJdszy7WL96lUqVKh9iBwRAAATai0D8u3%2BsvvyssDyT%2BHrD6W0SyGFczyelq%2Bc8N8lp83NwcrR5AaVRb%2BPOg3T7nBW049gIrd4zQC9tPuAtMv7Shj20cuNebZHxfd4i469t20/rtosFxuu0ofcAbdrhLy6%2BeecB2uJtB2nLTn/bdeg0HTozSmIEx95T52hXwMExRKv3DtL6%2BiDNX9NL2/ceo9HR0TSq%2B2HZCFygcuyohsbIh1Aqte4C5QvdfnztWk0YePN5zxjuTQllsho3m740vOcLnrNDTbQkdA2mbzLIa%2BpadpUDIF185WBwxms2/94gDJ%2BxmGos8mP5woGRp0K5RgFG5QLlPUdBgRedt%2Bur8uRP8WVxXnCZ5Buyu7U0gxqysT8yIkSMArHni50Scs2URvkr6TUqd2t1zyBfhRXOiG5f11ye8nnByryGCMfh8A2u3igfvkpUq3n6e2xN5aKtEyLKxZsmThWMH1/cVwYHiZYKdkEABEAABBIRUJ0HozGeDUmuDoiWkAxfLHnODmXeqlNdGH6KxYbBzbIooYwfZ0SSSXIHSXw1LNJIsMm4/K8YeF%2BcaU6aelV%2BWd9F6UYCJDTU5pikKwAAIABJREFUy/xm5cV5SLuTUL8W8K2W/DIv2gz3EdUT6uY5zEpULFX8stfkhOta5hEwsnyS1kdNB95NIoPDCGOA417jcI4wnDB2JgUBvseKfpsZaMOqVKmUGo42fy51Yzsdyah2D8k2N%2Bn959Qn1L5G0vVPBB0dou0sekb/QBtdDeYtWb60BPleGD8nh%2B7w9hw4FTH6UdepTqK980ZjJeWtRccuCIAACIwPAfXem7rtlQrys8Li5Ah81GR5h2YZrXz%2BSQXb5x9OjvYpi6Y1eX5tL81esol2Hh%2BhV/cN0tq%2B47S29zC9uuMwVfuO0PpdR2jj60dp8%2BvHaOvuY7Rtj1hg/Dj17j9OffXjtLN%2Bwtt2HThJctt54CSJbc%2BxATpwWiw07k9R5Y/gGKZq3XdwvPj6AL28e4CWbdhLL6zfTcMjGaasChjB/S/549aoCBvBIwZnaXjW/q1rfTSbfsDYbNc/rHPygh8vJ4dd93B5BPISyL/Z6VCTjgytPAIy88KgrxwYAfkhUIGytjoOlCyRjkue1ckRky%2Blh3DOSQeFhaGXv1BGIodBnXNGx0QoUly6Dd7W/HtOOIvOsqyS6BFSC4cgAAIgAAJhAu6ODhurkhpsNMMTf5VuWOzc1qlKnR53kHwDoCtNec2Ydpzehi9%2BwySDx5qR0fWFcly6DXZGnYMJpjxKqF%2BzfAP5S2qYT6hbuANtqGeizIVzRbdDpgLF%2BifV3SA9kQyVZ6czLZEsgw441b4EEt9jwlGQvCZzW9q4L5I24fq0ILLNtP47hAoHcamYtF0WBq6URcT3wjg6OYSKWrpWLqLdSVFWKXOO4CAAAiDQJAH3u38i4fzssjs5hBweHSeeReFnBsuIe1ake/4l0n8cA8HJMY6wxzqp%2B5/poZe2HqC9J8/R3pNnaX9jbY1DZ85562kcGxilE0OjdHJolE4Nj9Lp4VHqHyE6M0I0oG9niQbO%2BufF9f5h8uIcGxylI2f89TrElFW7T5ylHcfO0tYjI7Th0DBtODBMW/adokcWb6ITpwfTZ7dZJ4NIsVam7oL8Al4z2ubFF%2BpihIdDrTFOX0wVVHOl71DNv9TmTo64kRwyf7KMpPFc/Ofz3lRKPh5l5Lca5YUszbDvCsfOi5jpnDicwWGSbCRHY8RFI3%2B68yYfGd0hYZj/lePE7CyyxKKyGHHhjf4I1v1kda9GtXJ3cMSTXjZN1V2zxjgLAiAAAucfAVdHR10L90ucnOpVqoivWcMGrsbXvIEvXwOCMqSXuIOkOlB245P2Fa40mAudq/UMRnJltLan18h8Zl4BeCkPEurXAr5jOZKDHOz8ER4psYSDs0FzrJ0cas5p573WCn3CecTxxBKIu8eKRd9Rl9y/4eeH64po%2B9xGqACAOH1k22gyWAUENdSoVqzPg2LJH/FniBZ/Ssuf854xSGKjm8F57bqmRNWpKkbYpH7GKQnYAwEQAIGJI6Det2PfUW1K8rMi7vmi3jflhycskmWod/SA8zjr848TaI8dODnaoxxaosVr2/fT1Hvm02eLT4zLds0tT9K1tz5FX7h9LhXumEdf%2Bt58%2BvcHFtP8l2s0MDTSkjxBCAiAAAiAAAiAAAicFwRk58NgCBqT/I93emOSCQgFARAAARAAARAAARAAARAAASI4OTqsFtw3dzXd9dNl9L2fLaU75iymWx95noqzn6ObH36WvjNzIX2rtIC%2BMaNMN04v0388KJwSz0S2rz/wjHdNhPnGjAX07dJCuumhZ6k46zlP3u1zFtFdjy6l7z%2B2jO558gW6b%2B4K%2BtG8lfRAeTUtr%2B6ks%2BcyTFXVYeWA7IAACIAACIAACIBAcgLqy6vMX3klT0zMAUKVxlex45NeKuUQGARAAARAAARAAARAAARAAARSEYCTIxWu9g%2B8Y99R%2Bpf7hFPiefpO6Tn65vQKfXP6ArrxwTLd%2BMB8%2Bvr98%2BnrP36G/v1H8%2BhrP3qavnbf0/SvYru3sd3nnxPXRBgR9us/nk833j%2BfbnygTN%2BYXvbkfWdGhW5%2B6DkqzlpEt8xeQl%2Bb9iw9t2oTHTs10P6QoCEIgAAIgAAIgAAItBMBngokbhh6i5Qe7/RapDbEgAAIgAAIgAAIgAAIgAAIgICJAJwcJiqT/NzsZ1%2BjWx9ZSsVZS%2Bjmhxf528xFdJO3PU83zfQdIMIJ8i2xzQhtpec8B4m4/p2SH17EuXnmIm/zHBuzltCts5fRHXNeoO6fLqf7H19Chw4dmuTkoD4IgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgMBkIgAnx2QqrYS6nj4zRLv2HaQNW7bTuk3bxnCr0brNNVq/uUZ9u3bTwABGcSQsIgQDARAAARAAARAAARAAARAAARAAARAAARAAARAAARBoAQE4OVoAsV1FjI6O0nhu7coBeoEACIAACIAACIAACIAACIAACIAACIAACIAACIAACHQmATg5OrNckSsQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQ6HgCcHJ0fBEjgyAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiDQmQTg5OjMckWuQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQKDjCcDJ0fFFjAyCAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAQGcSgJOjM8sVuQIBEAABEAABEAABEAABEAABEAABEAABEAABEAABEACBjicAJ0fHFzEyCAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAKdSQBOjs4sV%2BQKBEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABDqeAJwcRDStig0MUAdQB1AHUAdQB1AHUAdQB1AHUAdQB1AHUAdQB1AHUAdQB1AHUAdQB1AH0tSBdvCgwMnRcHK0Q2FABxAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARCYDASEM6QdfnBywMnRDvUQOoAACIAACIAACIAACIAACIAACIAACIAACIAACIAACEwiAnBytFFhtUthtBESqAICIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACVgLtYlfHSA6M5LBWUlwAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARMBODlMVCboXLsUxgRlH8mCAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAQCoC7WJXx0iODh7JsWv/frroY1dT7kOX01vE9peX01suv5L%2Bz8uvol9ubP/l8qvondr2a5f9NYntnZddQRdediW9smVLqoqNwCAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAp1PAE6ONirjdimMViJZuW4dvfsLN9M7PreMfu6bPTRlWg9NmdtDU3qO09U9B6nQM0qFHqIbe4imNbYZawbpp2tP0JPrTtPMNbtp9uoj9Lnbf0gPPPVUK1WDLBAAARAAARAAARAAARAAARAAARAAARAAARAAARAAgUlOoF3s6hjJ0YEjOcQIDuHgyP3bYsrd1uNtQSfHeir0nAs4OWauOUOPrD5Oj712ip7dPkiV2gAte32Eeg4TPTRvHl02dWrsNsnvSagPAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiCQkACcHAlBjUewdimMVuV1Q28v5f7HByn3Py%2Bl3J/52wV/dild8KFL6YJLL6O3XvqX9J8vvcLbfvnSK%2Bhtl15Bb7/0Mm/7lb%2B8nH71f11OP3xulefgEE6OoeFh6t2zh7enN%2Byhu8pbaerCPfS%2BaS/Re25f6G2X3nBDq7IAOSAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAm1MoF3s6hjJ0YEjOUZHR%2BnM4GBT20e%2B8hV6esNez9Gx6XjwTnrlCNGs1afoWz11umTOWnrztB66eFoP/fZVVwUD4ggEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQKAjCcDJ0UbF2i6FkRXJsUOH6D%2Bu/FO66p25preP/JccTcnlaNnTT5MYmTHr5c00eDaomXJyjNAlc7b6633AyRGEhCMQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQ6GAC7WJXx0iOST6SQzg4fnzdX9GOb%2BWIpjW/3fuXObrsrb6TQ9x/X7/3Xrr5J8GFx5WT4yRdMme97%2BT4NkZydHB7hayBAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAQIAAnBwBHBN70C6FkYWCGMHRKgfHVy/O0Tf/e46%2BfKFycgidHnrmGbp86lTe/uT6qXTxZ2%2Bg//eaqfS2v/kC/dKV19Av/fk1tKSnJ0sWEAcEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQGCSEWgXuzpGckzykRzvfWOOrnhba7ZbfydH06ZEnRxy4fFLvvQlWtrTQ6teW0ZzF36CPvNvU%2Bj%2BJ5/kBckn2T0IdUEABEAABEAABEAABEAABEAABEAABEAABEAABEAABDISgJMjI7ixiNYuhZElbx9/d44GB5rfLv%2BNHN17sdnJIfW6bOpU%2BsP3vY9%2B9Vd/ld761l%2Bkn//5N9AvXHABvfnNb6aBgQEZDP8gAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIdTqBd7OoYyTHJR3Jc9Ts5IsrR0JEcDexLt53cnaMjdT/%2BFRfZnRwbN26kN73pTZTL5QLbG97wBnrjG99I73rXu2hwcLDDb1lkDwRAAARAAARAAARAAARAAARAAARAAARAAARAAARAQBKAk0OSaIP/dimMLCikk%2BPw7By9%2BuUc9RSSb//yuzm6%2B1/inRxHjhyhv/mbv6G3v/3t9La3vY0%2Bcvkl9NnPvofe96H/Sp%2B%2B9lo6evRoFtURBwQsBGrUnfcdavnumiUMToMACIAACIAACIAACIAACIAACICAmUC11EVdXV3UVaxQ3RwEZ0EABEAABFpAoF3s6hjJ0SEjOWhhjk7ekaPjr%2BboeDXZNiWXzMkh6vuuXbvoz//%2B7%2Bknjz1GGzcso56ez9CTCz5Evbuw2HgL2gOICBCYGCdHuZD3RirlC%2BWANuNx4ErbdW08dEMaIAACIAACIAACIAACIAAC6QlUS0XPyF4sVdNHHqcYk0FHFwqX/nByuMjhGgiAAAi0jgCcHK1j2bSkdimMLBmRIzmEk4Om5YjO%2BiMzfvSjHF10UXRbtMi/Lqa4SuPkELoteP55%2BsQnP0m///vvod/4jf%2BLLrzwF%2BnXf/3X6KKLLmr5dFW1cjcV8r7RmafJyuepUK5R3Lf9te5QvNA0W768PLkGCTSTPtVqVO4uUL4xGkHqn88XqLscp729Fuj5Sj3CoVamQj5HSeM1lX97FhJemQgnR5kKXE8KNL5uDlfarmsJcSIYCIAACIBA2xCoV3yDl/iytFhJ/10pxw8bzOp1qlZKVCw2vloVX66KNIolqlTTpyOBWdMjonq1QqWiyo//tWyRStV6wi9m61SvhnUuUrFUoUwq16tUKibkOka8JDfjfxr9WsLXqIX5ZArduE406phX7pH9ImWo3kT1ChUjsrQ6XZT1w1GnQzLCt4oZgOlslUqsS8b8mMTi3IQQUPU2aVmq8k/UVmv1ToVXMrq6StRqN4fKk3aPcJ11n1P3xdjqmLiwNX7mNkXLT2BUhlt/ODkSlwACgkAiAsnaHUc7O%2BbvX82%2BW5rep8W7R5XqjlcPBa/Z%2BEpSYK9a8kelxT5LHG0iy9DaU/2ZUSxSqVJN%2BA4f0M47aBe7OkZydNBIDt3JccstwfUzpKF93rz0To5NmzZ5i4tfcMEFJNbh%2BLmf%2B7nA2hxC9pkzZ6K1PNMZZeCWOkf%2B824jdLlgzntQjs3J0WT65UKETTDdHImRAuldHbqxO7mzQhRBrVygfMOAH%2B/kaDL/mco8HEnpEK9vOG7244kcMeFK23Ute24REwRAAARAYPwJ6B2PhMb4gJIqvjJQEVFcp0U4O0TnLCAryYElPapTJeRMiRilinEGvTgZwlmSREc/jOcsaXTUlIHREn/MeFnS8xwWJTbex%2BrXEr52XcJXUrHzqpulc6x3lLscBo6wAvpxCkOntU6HZaSpSJouQUNOxvxo8rA7wQS0ehF/D4ba1YBR3ZwPVV%2BCdcU1ysAsKflZlWaSe1ILE8rPWOqYODda%2BUSeJ4G2JTr1lEt/ODkSlwACgkAiAnxPhe/LwHGwHWTBY/7%2B1eS7ZWw7FPNu2mx8BmXYYXau92s9/4YyYBna8yBQbvK8Ia5BpfApODnCRCbwuF0KIwsCfSTH69/JUe%2B6HPVuTLYlHcmxe/duuvjii%2BmNb3kL/cIFF9CvXfgr9Ju/%2Bcv09t/9b/Rbf/zHtHfv3iyqG%2BMoB0Vo1IY3OkIboZHvtjoKWIZwJtRq1s2kAMfNZUy/4eTwHBmaJ6NWK/M6E8LpkdZ4r4/iSBrfH40RdPjEpdt0/k1QU5%2BbGCdHajURAQRAAARAAARSEAgbpBIZ2nT5snMSMlBJJ0f4K7N6vRpwRrQqPdXBDY3a8L7O00Z2hPXkvAQ7YWLkh/yJ0SHqS/74TpY/mkR2yvz/2Hw2OLacl8yE9p9Fv%2Bb5ago4drPoJsSxft5XjXWq182bI2n7JTYQFL0RSEHZVX%2B0kt4hNzkwWIasF/H1KKqQcvD5BtcsMqJScWYiCWjtjrVtUvpxPffqW3z5c/gEslUqze6Z773gfeOHkY6ArqwOyGZVjYuv3bfeaEBLu%2BLnLU6Yuj4x5aLSxx4IdBoBvqeyvAOM6fuX1sZ3%2Be%2Bnkn2yd0v9uT8R8aW2ln/ZB7CO5Ajm3zialmVE37Gq4dHZGZ5l7WJXx0iODhnJ8fx3c3TJ/%2BFPQSWcF0m3JAuPi9ts7dq19J6PfpT%2B7VvfohUvPumtyTHtkT%2BhVze/bLkLs532jOwOB4Zu7LctnSAN9XEGfZOGTadf7nZMg6WM97mcezRKULfgKI44J0dNTJXFUy8JJ0eej%2BOYNJ3/oOIZjxSnOH0zJoBoIAACIAACIDDOBPTOU0JjfEBD1XmJGPGrFcfUQCpeuulSVLxwel4H19H50Z05Jhu0dMpYjW2asavLKEDMaqRGRkgjtHSOhPUNYBQHY8IrmEoz%2BjXNN6hK5KgZ3Tx8jYV8YzlHUk5wgsveZVRWdVOUfaSKaDJ4%2BrZIoBhdpCFATI%2BV0MgdIxGX24AAG%2BesRiKpZLS9dlchLbw7oExgfP/5nsgygnCcVNV0bCVCLnPHM2uccohkQKAjCMh7KtM7wFi%2Bf8nnts2Rq7UxpndL9e5qe/9wt/PNxo%2BtHJw/80gOWS7G9yIpnGXY8ijer9XHSmnbYjg5JOg2%2BG%2BXwsiCQo7k2LAqR8vnpd92bPKnr7riohzde3GOpk3J0ZcvzNGyp5%2BOqPPQE0/QV/7pn%2BjKKy%2BnSy75DfrgB99Ol176P%2Bmyyy6joaGhSPgsJ8rd9hEavjxl8DcbwJszkDefvjvXykljmy4rGl85bbp53Qhz3kVclX/PGeJNjaXO2eM16DbNP6p/%2BjPJ9U0vGzFAAARAAARAYPwJyM5HsVLhef5TdRC5c2bu3LhypDos9k5NJL4jvWqlEjP1leoIRvOoGagdvSelsym/mgyeikudi6YZyZ3zhEo7Ba%2BARKWL6Gz60yqpc3H6Ncc3oIjhQOmRRTfSptKKy4ch8fhTXO9i2HO4LooYK/hakUqNRZ8zO/hK0pkWo098zhCiHQiwgcfgHNP14zpUolLDqRepZ8bwMXL1OOO2r93z7WzoZ%2BatZSifvV3tnPdxqwtICASaJaDak7F4B8j%2B/qX0crXVSn703TJJW%2BEK47omqScJI8NG/vn5FdVd5SvGkc0yHO80Wluctozbxa6OkRwdMpJDLCTezOZycmzbts1bXPyd73wnveUtbzGuy9G6NTkit3PohDKA54xDOdT1OIN%2BSHDCQyXfnH6MGF6zI%2BFIDhneG90S5%2BARaQv98v66HzxdltK5eSZKVqb8x%2BDxL6s0mtc3UYIIBAIgAAIgAAJjR0B2Kjwji8sBYFeBO0YOx4A1tkw/9utlJaGp9DRDeKSzqXWenFlxhhOd2fAikKqDm7ZTpnLd2MvAKyhjjPVz8Q0qYjhqVrcWcjZopxYed3TAvXhKj4jxkuuOkJHhftPLPyDLpDDOTS4Cqj5E2iYtI2wwKlaoyl%2B1Rg1LMgqHT9HGyrhj/a90i7unxlqTGPl8r8HJEUMKl0FgAgmoZ2/T71qmXOjPX9N127mk7Yc1nMpXomdDpK1vNr4tY9p5Gxs%2BH%2BPgEKI4rOt5oJ6TacsYTg6tvCZ6t10KIwsHOZJj%2B305euX6dNv8T%2BXo3q/Hj%2BTYvn07CQeHGBkgN7H4%2BM9feCH9p3e%2Bk7Zs2ZJF9Yxx4gzgyhFg9IFkTFVFi0tfhTTt8UgOx5RcKl44L%2Bo4nfG/OZ2VPmKvNbL89UK0NVbEOiViQXnPMWNOg9k5p/pKwsgcRo6YySUqG0WF9eJ4NRKLhQemDMv7a7yoWME9V9qua0EptqMaZeEtpHHa2r0v2wDT/9jcc7Z84TwIgAAITAYCqrPgG/XVcfLOg4zj6pTYWbCRK/GXrM2l5/zanztYdoOhnxOpQ4JOmxdBdTCTczUzS8/LLCd4tnX6Ofl6fVh/qgExgiTZL41uqlwSi0%2BmhB%2BKDRBxdV3p7HZyaGuIRIwSJsWUXK8eJdbHJAvn2pEAO3Ct7WGoDnCbZauTKnykLupr2BjSi7Y1dRJrZ8ip98Roq65icG74VEy5/rrbURcT1lG7f%2BrVEvFUcI3p3IqlCmnLK6VS0wus6Zq2bXHp77qmK%2BmvUaSmafFGuhVL3tpAejjsg8D5TWBs3wG4vTG0l07u3E5nf7dM0la4wriuSd2ThJFhI/%2BmPGrtpss5w7JYhu15RmK%2BKn4GpW2L28WujpEcnTKSY2GOtv1TjjZ%2BI0cbv5lsS7rwuLgpHnvsMXr7%2B99P/%2BujH6V5T03z1uT4j%2B//MT2/6kW%2BZ8ZnRxmozQbVuOvNatmMfBU3iZOCDcyc0XTxVU7NTgN1Pc2e0oHVShOdylTIK2eZ2VBu0bfWzY4Da9py5IswyrPTIaQgywlOGca8bfFCYuRhwMlRU3xMebOVuytt1zWpg/2/Cd5pnRzWQrFrhysgAAIg0OkEuEPDPQXVQUxqjM/c6fPgjnd6IlGVJme7UdDJ86IZDsNCjJVGhU/K1ShG0705OWHprdJPyLXz1Tun1jVPwqppI0Pi8%2BxIOyI3wwnuXDs64J5YxTPSsQ/L4OMEX4hz2Eb64eMMWUKU9iLAbVDsvO2yDqo6b74/3Nf5GWAw2rEu4po26shzbnjOA3/9Js/gblxF1sVWu0cMaesxE%2BnoOTk0mSH9pM5i0fBMP77XEtynoQRc%2Bruu%2BWLi82RyXoVUwCEInCcEVHuX6NUsFRUl29zW2oUF2lJ7MGHBp0qx0a6GM8AOAEsbpLVRRv2aje/U2/OYk9/OSkeO4pW4jWId5fMtnKhwtDf4xDw3wjHFMZwcJioTdK5dCiNL9uVIDlqYI5qWIzrrj8xYuTJHt9wS3Wo1Na1VGieH0O2706bRvdOm0U03/TtNnfpH1NX1W/TNb/4D3XLLLTQyMpJF/dRx2KCcCxqolSC7kVmMFOj2hwqo4Cn34tM3CKzVqKwtBp5PYgxmY70%2BrZXKm81Ybki9ZaMvhOxM%2BWellPNCLIZe6C4Tz6glZJe7Iw6QYD61%2BBaG7BDwRh6Y6wjnIeTM4Lih86y%2BZUfJK/j6eyNSVM5EvtSoDrNOrrRd1ywqNU6r%2BpKNt1u6uMq6OUfXxMtBCBAAARDoSALcmZAdEpFL1SkxdpIiIFT4cH8sElQ/Ua9TVVucO/lX/RnT09LmzqbBiMidpwSZ4bCJOlqq45qMq6aw2M3MKyTHetikfppcF18RTHwJ7hlFEzD2xabRTdUPadSU/8VWfPXMRgRbB7wBgsMZvlDna0pG0rrE4SQ7gyytKLA7GQlwmRrqjsiPod3memFqizi8qm86FldcvpeLJSoJw1uxRNW6chKI0QVqVIdZvp6Wvs%2BytREY%2BnV9P5GOXXJ9En9kidKSqBk9WQ%2BtXOTtx9didlz6u64FDJ5d4XwFn6ERZ2qMTrgMAp1JYAzeAVrw/sX3eYLGg8Ma2nPVbgZH0AXaOEcazcZ31hl%2B1og%2BhXpv854bzojaRZYRfZ54jnbpAErw3NCk8m672NUxkqONPE5cO1Ls2JwcwsFh%2BpJ83rz0To5du3Z5i4u///3vp7e97W30pje9yVuXQ5c/Lmty8Bf4OQoavzVgWhhdv8A%2BT4ukxUuyq8m2pi/kaOH0dNV0THGJKeN00JavzjvTj4hXzoF08UKCtHxlkcPOAKuDyoNH3dpIj3A6LMPoiJB88pRvyAjy8/MjDfNh2fK8dQRICIc8ZJ0SjR7JkWktE1farmtSB9O/0svsWPHjqLoh6mqYiUmuPJdMvgyNfxAAARA43wiojmCwP6TOJzLGc4dEd5QYWGoGIml09gzdntHMEN52Kml6tviaHqb8cecyCMUojcMaOqLRCKrDZ0o3El7TsyleEcG2Eyn1s4pRRs9E%2BbTJCZxPoZuFm87QN9QGEkh%2BwPKjHXAlROlrXFDcJMN0Tgn090xhTOfC8XA8yQho9cfQDnG7o11ThqtoO%2By6JsCwPEM7puIKB0eFdMcBQ%2BU62EWJDe1aHC0bLDK8k1hHg%2BNayVLPNmteVODonqZzoD2JjBiJtg0u/V3XFH/hXIqq5J3hZ2I0XUsMnAaBziWQ5D6Ne%2B%2B0yBAfSljvwxiifJ8naPA4rKXNrWsfCIXbIvHBkK2pkCo2G1/KifxzWyQdzmLERfSZFImnn2AZapRgljzqIvV9ODl0GhO83y6FkQWDzclx7FiOenujW39/eidHrVajd7zjHQGnibcmxzveQb/4jnfQ8uXLaXR0NIv6yeNoBvY4I7TQ19988d6wG%2BWcAAAgAElEQVS%2BN0pAXwNCHyGRQI0U6ducHJ7DI/SVfzRlzegcsdBLI346Y3RL1tFIk/9opsQ3/1RorOsQa0jX0oqE5WsGw728ViirEScOhuFLzTsTchSWqVBo5Wpw0LjSdl1T8sN7LeIdFiuPJeuUjhEZHf8gAAIg0NkEXEY0ZQiKN1IrObFhLZ1Gr/MS%2BjrYzj5FeiYhug7GzqOSn8RYF9cRDaqgZMeyEhF1XcNGtMS8ghq4j1LqZxKm62zka4qU5Fw63er1OvmbL9vbr1aoVNTns0/Z8ZZqch5NBsU6hdcCMJa1UYbKo63uscFTZ2uUJZXF/2QlwGUdMRCp9jlgK%2BN6EJ7GJL5eudoxpUdYrk5WS0Ovm3qQwL4WPpCJQKDAQVIdjfebJknlx3T/agFNuxrjsNEteByV7dLffs1S1hHdFM%2B4/Eei4gQIdCCBpt8BXPd6pvcvdY/anu96MdjbBPFuWPVH1YXfC%2BVx3IjVZuPriob3TQ6KRM8ETZBJhsyb/p/R4dQudnWM5OigkRwf/9Uc5d%2Bco/xbkm1Jp6sSDox7772X/tPv/R5d9O5308MzbqGXXvo7%2BvK3/pAeX7RozB0ctXJBTfdjMBBrt23srvr6PLmjoOn0hdMlNBVTxHjf0Nxt0E5huA6QUAZ2W7qB4KGDpvMv5PH0WwbnRCg9t0PEzkCWredoYCN8yJnFeoTO61MvpaxjMt1czJRNHM4g31XurmsRdPIE57NZ3lKg/q/KwDQqRQ%2BJfRAAARA4Hwk4O1BppqvijmDUqBPLVRiiPcOz%2Blor1kDTRHqe8Vl2kKydrhZ2RCMAlOzYfEbi%2BtNVpeZlkmM915x%2ByfhaE4%2B50JxuunBl5LRMBaQHNu1zHVT1NmjgVOet5cwyQvcNd%2B5D5z09LAZPmyyT7jg3eQhwXQg5F/h82ElnuUe4foTkaCRczwN1v4TT0wR4PtmGA9HatqrwSWWqGElHm7h19OQl4KGnG9gPxJWOVPN/IF7MaBkrf2tZh6VrfBI6jaIScAYEzg8Cqv1J8Q6Q5X01gFO1z005ObQ2SIxGC4wqqdep0pgKVLyTGJuCZuMH8mQ40NusUFpxo0tYGssoUqUaal%2BrVaqERrEY88nCojtwckSZTNiZdimMLADkSI5brsuR2E%2B7zbrLH9lxxUU5uvfiHH3j3RfQ7LvuYlU27dhBv3PVVYHtoiuvondc/nF6619dTm/50OX0cx/8C8p94DLavns3x2vNTo3KBTX6QqxloVY6yJqCMvjHjQgRIyBanT4bunPRr/7VtagB3s%2BtMi6nc1aoPKeN16r8x%2BdNL0%2B3vmz0DwybkHGkUV%2Bykse%2BfNYjELdBt9CY4s3ghNC1C%2B%2BzzJh4rnCcJ4MM17WwLvKY04pxvPjhJbtkjj/WJ5FsqRH%2BQQAEQOD8IKA6eDaDkDKmWo20DVRsnEnbywihVjpZOmZNpScWKVRf8McN5U%2BTpzRh9bnV47iG8EQOk/KKRHSeUJ3wdPql4%2BtUwXoxq24mgUrWWE1ZUyyFjA9hNbjzH3ZmKN3CZcBlHjYiW2WFE8Xx5CJgboet9cDmaNANRhYrE7dj4bplk2kA6dIrEJz1cbf1gTgxTgJOOzLqJSxFHJu5mkJGzvG9lk53L1XHQrk2/ipfynFqc6jy%2BSafxZE84wQIdBwB9ZzN8g6g35dpbje%2BzxNEModVbZfLUaL0C79fNBs/QUXg9r3Rv%2BDjFFMZcpyw/nr6WhkmavdV3Haxq2MkR6eM5CA1DRVl2BdOji%2B9MxdwcPzo8cfpX%2B%2B%2BW9Xaxt6i3kH6j54BuuKZHppyy3N0wXUP0q8U5tFvX3VVJGz2E2VtEep80wuG63okMwCPVfrKoBz4Cp6/vI86P5Tu0nCfzBit4qk0kzs5Wpt/Zm4w4is95V6MvsxKcwbJkRuafGmMV3lWcg0%2BDrWItiZDauT6T5o3Vzipq8nx5rpm08uVVjSO4qJYRUOJMyzXua6KOS7OggAIgEDHE%2BDOg8tIozpCYUNrkI8M5%2BqIBGPYj7QOi7UDmCU9fVi//1WYXQf/CncuDQa/YNwkOusxVHg3Vz2ObV/JcnV2bbHN55XM5Pql52tOO%2B5sFt3sMpURwObos8dV04gZvjJ0RAtcYmNp9N4x6ybrvuHLU4esQJo4mHQEom1RzH3A7buqV1EZUQyuMFwfY9rDZOFUPU7bbiXSMZGxS%2BmQvJ1rMON7zfX8jPIVZ1z6264xUzkCMcm/9flp1gtnQeB8JKDurQzvAPqC2inuN9t9HuWv2nm9nVQ6q/Y9GlecMbdxzcY3pxU6y88gxZXz3WV4fwlF9w5ZRkw%2BM7bHcHKYoE/QuXYpjCzZ/%2BBbczT18ua39/9ijhY9/jir8O3776fZCxbQ2XPn%2BJzY2XmKaM6aE3Tjiq30/pk9NOWry%2Bi/F6bTHxamtc7JIQ3WroWcA1qlPDAZyXURY5x%2B1GitjMz6QuXJ9oMjFfRsqH0lP86I7cUZg/wr47jmmFAKhvbi9FXOHumskPID%2BZPlLJ0WnC%2BzDtFyCallOZRpmxwUehRXOFfarmu6fH2f00o02iKOd0My80vrZNM1wz4IgAAIdC6BSjHFF6EBg0q0s8EdphjjV1Ka3BGyyEudntYBSvO1HqcTazAzdyTt%2BVUd19TGNYPQOF6GKDGnUuqXkW%2BMEpbLKXWzSOHT3IlWHXG%2BFrfD%2BY7eE3FR%2BbpThqFeufR1yuIUsTMZCXC5N%2BpabFmruuPb3pLdN662hNtDS7sssSYJx%2BnEtq1SqvrnuAY9OO1EcsOMVBqxe8x/nJ0chjzH6ooAIAACdgLctmZ4B4hxWtoSTd5OqTZKf1fkNjC2nVPtvv7u22x8W74C541cNX1s02jpQlhG3DuWmZMuyrTfLnZ1jOSY5CM59vT2Uqs2uXi4GMHx3UcX0CuHRmj9MQpsaw8T/WTNCfremh768NwemnJPD025oURvbpmTQxmwWzM9VfT2cxuAxz79qNFaGZmTOTYa0yp5C3m32skxRvmXDodEIwA0HbrNE5RJhr5TQ/ILs5ByGk4NqYP0jISqhpQZ56wIRVOjG6QzJRygccz1zhDOlbbrmiUpbQ0Us0MnGE9ycjkvVJjACKSgIByBAAiAwHlNoHVODtVpSfEhm5M9d8CMBp206Wmdn1KVLLO0mPVJ2sFig1dcR0wmo/Kgd1zl1bT/bl5ppYnwafRrgm8W1VLpFp9AcmODQVbqck8vg/Xz7oWYcmmFPgYVcaoNCHDZNozq3DbZDXPcLoiGmeO72yiOY2h7g3XRziQ2HOue3kEgUk2kY6zxzxNE/tRObibGnDLP9Hlw6W%2B9xszs5W3UEydBAAScBLi9StJmGCRZ71lDWD7F93NM28PtTDAcpxmrs3pnaA8nhyCg3hm7uorm9UIkqKScNJlp3qnh5JCg2%2BC/XQqjVSjEOhpvfu97M28f/ffbafaqo/TA2nOeQ%2BPx6imav4PoX9cSfXkt0Zd6XqUv9vT401VN66EpXWvoDYX7WzKSgw26FkN084ykQTxHJmP2uKav51EsTh67KUNzvrvM4eOZqDwHRjoYIo5Z/tOMApDOiJzD6C7DCIeBlB1xHqh8C9QybzYG8rqpXhhQ8SmX84ID6VM9RfRUupnSzqSXZOJiKJWTLB1hWYdEI0OkYPyDAAiAwHlGQCyeGLupzkixUuXwAVLcCWmV8UXrlJm8JinT486gSVYgI6YDPf929wh3kg2GQZPUdE4EswR1NoaXCphiT8mM6zA2xzeFShw0uW4cxbqjZOkGAGvw8AWLASIczHkcJ4Ovd1GpUqGiN6oqaPBg%2BRzWcp0DYmfyEdDqaqmqDP2Odo3bJWEIS9hu8v1saMtYnuGaztMdTrWp%2BvQrevy4/UQ6JvhK2CUnTgflNBonJwff2wmneYnNAAKAAAjo72KZ3gG0jy7StWeqHXS9Y9naUj7fFfesV%2Bno%2BjUbP1HNcT1ztPZMODoqttdrluEII5ThcOna43axq2MkxyQfyWG6IcQC4L/d9S36g3tepCnCCfF9///Dc3dSoecs3d1DNK2H6P6eczRjzSA9svo4rdx/jnoOE63Yd44eWNNH/9izjm7vGaJvztvhOS/Eehtv/cAHKHfJX1HuQ5f72wf%2BjP7rhz/M1026pDsnjfjhL/LTSXGFZoO0YeFvoibTr3XHrh2i0s%2BSR6mfw/hvzLwy9tsM/H40KT%2BLbsaEtZNKh5xrNEdN6uCPVrHqy0b8PHV3F0iMgDGFZd6FburOC5n2vLEh3%2BCE0DIS2eU0YuK5wrnSdl2LKMMndN4FKpsHxBAl4M16O9hxstgBARAAARCIIaA6SLaOmDQU2a4HEqhXqFK19Wb8kHGdr1Tp8dddMR2kgJLBgzh9shm7lMHSya0FvIK5SXqUUL8W8E2qkQqXVDcVw7anyjZdx5jlcUc9e/1S9ccuQ9b52AWFW6EPZw477UaA62ux2HB2xdRbrT4U5fSEDqeIyC/XNYMjQ6VfcY6Ic4Vj%2BbFfINvpswyXjsIZaLjOUjWjmLMN5gihHWYbUwahaOLQpX%2Biay6joEigXqVSpWpIGadAAAR0AtxWmZyiY/z%2BpdK2PPtdbYx2zdXOcXsSzl%2Bz8XWItn1uYy0fQPF1MXVuXBgLIy9t1U%2BxyrHoCCeHBcxEnG6Xwmhl3peuXUt//M%2B30B/cuJymfPF%2BmnLzQm96qULPcXZyzFp9KuLkWLB1gG5Z00ci3Afveoy%2BevcPWK3Lpk6lP5%2Bxgv5y7lq6eu6PaMo/X01PL1vG15ve4S/KhVE2yciGGoVtt7XuAuUL3X58TaGaMObm854x3JsSSh9FIcM1m740vOcLnrND6SbyEkzfZJCXatj/lQMgXXxl8HbGazb/JEYk%2BIzFVGORH8v3nQ2Fsl5%2BNaqVC5T31mEp8KLzdn1VnvwpvizOCy6TfEN2d6TOSD1dzgRXvtgJMAFODpde1Arekp/FiSTZ4R8EQAAEQCApAdV5MBqCuKPk6oBoacnwxZLn7FDuDjGqRCxcXWxMH2L5WlXGjzPyyCS5E1WiauyolcbIFhmX/xUD74szzUlTr8ov62MMaixL7iQ01Mv8ZuUlk0v9n1C/FvCtlvwyL8YYX1UWEuombH2VEhVLFb/slYBIXdO/cNSCxe/K8klaH00Sk8jgMMIY4LjXOJwjjEkHnJscBLh85XpKceWs7hXpIIu7zdgoZnAQsFHOcE0HaA3H7YUYlZRkJKEKo8tPpKNcR6rRdqr4dapW1HPGZSBUcQx7WlnEMQ3HdunvuqYcon47IBwZdfUQJXEg2lNvtFdapcJK4hgEOoBAU%2B8A8h7P/P6l2l/j%2BzN/JNJ4rqd8t%2BS2wnPoNt6p%2BT1XvE/L50QXmd5xmo0fWz24vbc4MLx3tJi2mGUU/T4D58/vM1TEO55s65MuZq4p3i52dYzk6MCRHLKerdqwgd718S76pUuupF/6i4/T2z95Df36NTfQe66ZSr93zVS6%2BLM30B9c8//RH372BvrAl6fSB6%2Bf6u2/%2B5oveuFmzA8uPC6cHCs27aTFx39GPT1/Sl03TxkjJ4e%2B5oR7P2wEZ4Ozt16FOa51rY%2BAUdgcN7xmRiB9zSAcDqcfB%2BLIwkr0P15OjmR5F3kK5CWQf7PTgR0ZtvLJizUklAMjID/EKFDWVgeDkhXRNyTP6uSIyRfrYdXBT8gVzpq25zhqlEdYfoxeItXmeKv6ptdf%2B765zEOYcQgCIAAC5zkBZeA3ddLYmJXUoCI7jVqnRBrf9H9TWqIgUqfHHSSts5cl7Ti9Y4x%2B0UoU1/ltxIhLt5EXG69ouknPJNSvWb6B/MUZbKXuCXXT64ujzIVzRbcTylQS/bP%2BSXU3SE0kQ%2BXZaZRNJMugA05NEgKqPfbaywTtTsCQ5XKQNQhweINsbn8N13SA5nAh3R33pP4s8PeD91ciHcWXwXw/WNr/ot34pufHuK/JTvr4k3Jc%2BruuefG1dKOcVD5b/0yQ2uMfBCYPAW6LHO2N9R2g2XuN4wfbrwA9DqPu3cB97WxrfadmILwhn%2BJDD/M7TrPxAzmJHvD7obud5TZP6B5uTFmGhQ/nt%2Bg5zqNKuM/AyeHmM65X26UwxiLTr9fr1LtnT6ZteGSEVRKLkf/i%2B99P/8%2BHP0wXXvFndOGlU%2BiX/mQKveMv/oJEGi35NetkEErUytRdyFPem5pIM9bn840RHg5Nxzj9greOhiP92EvK6Owy/kfFKEO/M14L8u8cWSAVk2WkOzryefL4eGES6qsZ%2BV35YgdCzHRLHC7sTIgZoeJyXsgsi39XOHfaFidHjF6cdkberK9eTs59ODmYOXZAAARAwEpAGaaiRhN1LdwvsYoTF%2BpVqoivTfWvzERHpSg6KaEvUwOCMqSXuIOkOlDRfEoltK9kZcdK6FytWzqQMp7pXxmt7ek14mXmZUo36bmE%2BrWA71iO5HDVNX%2BER1IelnBsoHAYMSxR%2BXRSGQ3WznstqSxOHDuTjYBuEIptO0Tm9HvUaTDzSbB8Q1g2GBqu6RxN4ficbDtT/Qfvr0Q6yulPGu2nbggsRkZ36Non3Od7bfymq1KaidEopQzPUCUBeyBwXhBwvD8legdwxHe/r2ptb0x7KdYF4RFYsl1M824pdZRxvf8ij2KNLedm49sS4GeP28kRWBdFjMbQX3JYhnpH19ty0W/wnFQZzbvtYlfHSI4OHslhuz9M59/98Y97C5WbromFzP/17rtpYHCQeuqD9NCKg3THypV07cqV9KezVtJ//osP08DQEEe98qtf9WTp5/gidkAABNqMQFbnWZtlA%2BqAAAiAwGQnIDsfsR24FmV0vNNrkdoQAwIgAAIgMD4ElDMlzrA2PvogFRAAgfOTgGyLEjmjz09EE55rODkmvAiUAu1SGEqj8d27bOpU%2BsGSPfSlHqLf/MhHaENvb2D7nauuYoXWHyP6yZoTdGvPAF3xTA9N%2BcEKmvKPa%2BgNf/ReL87/vvNOmrd8OT1dPUm/8N73cTzsgAAItCkBbUSMaSmVNtUaaoEACIBAhxFI%2BKV/y3I93um1THEIAgEQAAEQGCcC0rCYdgHacVIPyYAACJwXBOQ7a3AU2nmR9UmUyXaxq2MkB0ZykHByiCmtrn%2BF6K3/8xK6/Gu3BzaTk6PQcHJc9NU59Ad3v0Rv%2BB/v9eK8%2B5Ofg5NjEjVEUBUEeKqsnFgPBT8QAAEQAIEJIcBTdYzT17Ljnd6EQEWiIAACIAACzRCAk6MZeogLAiDQGgKN6VXHa6Rza5Q%2B76TAydFGRd4uhTFRSHQnx5vf/wFv8XGxGLncTE6OmxpOjt/66jK6%2BB9XeyM5RPgLP/wxODkmqiCRLgikJCAWJpcLibvWNUkpFsFBAARAAARAAARAAARAAAQmOQE4OSZ5AUJ9EOgEAo3pVTFVVXsXZrvY1TGSAyM5vJEcP35%2BK325h%2BhdH/tYZJHyxWvW0K0zZ9LOU0RrD/vTVX2/4eS48qs99H//6SdpU1%2BfF%2B%2Bfv/99uqe8nB57FdNVtXcTBO06nYBYODyfL1B3uUy1Wk3Lbo1qjcXIpYMjZ1hsXYuAXRAAARAAARAAARAAARAAgfOMAJwc51mBI7sgAAIgkJEAnBwZwY1FtHYpjLHIWxKZQ8PD9K4r/5re%2BN48DWoLiMu4o6OjVJwxgy54X97bxFobb3pvnt74x%2B%2BlN/7Rez0Hhww7cvYsfeQrX/HW4zh68qQ8jX8QAIFxJiCcHOzEyOXs%2B3BwjHPJIDkQAAEQAAEQAAEQAAEQaH8CcHK0fxlBQxAAARBoBwLtYlfHSA6M5GiH%2BwE6gAAItJxAjWrlbirk85QPOznEuUI3lQMjPFquAASCAAiAAAiAAAiAAAiAAAhMUgJwckzSgoPaIAACIDDOBODkGGfgruTapTBcOuIaCIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACLQLgXaxq2MkB0ZytMs9AT1AAARAAARAAARAAARAAARAAARAAARAAARAAARAAAQmCQE4OdqooNqlMNoICVQBARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAASuBdrGrYyQHRnJYKykugAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgICJAJwcJioTdK5dCmOCso9kQQAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQCAVgXaxq2MkB0ZypKq4CAwCIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACcHK0UR1ol8JoIyRQBQRAAARAAARAAARAAARAAARAAARAAARAAARAAARAAASsBNrFro6RHI2RHKJAsIEB6gDqAOoA6gDqAOoA6gDqAOoA6gDqAOoA6gDqAOoA6gDqAOoA6gDqAOpAsjpg9YCM4wU4OcYRNpICARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARBoHQE4OVrHEpJAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAATGkQCcHOMIG0mBAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAi0jgCcHK1jCUkgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAALjSABOjnGEjaRAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARaRwBOjtaxhCQQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAIFxJAAnxzjCHs%2BkHnnkEZo9ezbNmjXL2x5%2B%2BGF66CGxPUQzZ86kkthKJZoxo0TTZ8yg6dOn04Nie/BBeuCBB%2Bn%2BBx6g%2B%2B%2B/n358//007cc/pmnTfkyzZs%2BmQ4cPj2c2kBYIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIWAnAyWFFM7kvCAfHuXPnrNvZc%2BeIt7Pn6KzYxDlv/6z2f5ZGR0dJOE36du6khx%2BeRYcOHZrccKA9CIAACIAACIAACIAACIAACIAACIAACIAACIAACIBARxCAk6MjijGaCTGCQzg5RkZGvG14ZIS8bXiEhodHaGh4uLGN0NDQsL8ND9Ogtz/k/Q8Oif8hOnv2rOfkOHnyJPX19dHMhx6GoyOKHGdAAARAAARAAARAAARAAARAAARAAARAAARAAARAAATGmQCcHOMMfLyS850co006OYTTQzk5Tp06RceOHaPt27d7011hRMd4lSbSAQEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQMBGAk8NEpQPOiTU45EiOxx9/nJrZNm7c6I3kOH78OB09etQbxbF161aaPqNEBzF1VQfUFmQBBEAABEAABEAABEAABEAABEAABEAABEAABEAABCYnATg5Jme5xWotFhmXTo7wVFW26arEVFXeNmierurIkSN0%2BPBhOnjwIO3fv5%2BE80MsWH7wINboiC0QBAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEGg5ATg5Wo60PQQ%2B9NBDnpPD5OAY5vU4xLocak2OOCeHcG4cOHDAc3Ds3buXdu/eTevWraMHp09vj0xDCxAAARAAARAAARAAARAAARAAARAAARAAARAAARAAgfOKAJwcHVrcM2fO9J0cwyNNTVUlprmS01XdcccdZNq6v//9DqWIbIEACIAACIAACIAACIAACIAACIAACIAACIAACIAACLQzATg52rl0mtCtpDk5xPRUchuyjOIQ58VIjqEhOVWVv%2Bj4oJi6anCIDogpquoHGlud9u%2Bv0779dTp06DB9rxtOjiaKClFBAARAAARAAARAAARAAARAAARAAARAAARAAARAAAQyEoCTIyO4do9WKpV4JIfv4BBTU%2BmbmqZKOjj09TgGvHU5fAeHcHKIY7UN0sDAIJ0ZGKSRkbP0ve7udscB/UAABEAABEAABEAABEAABEAABEAABEAABEAABEAABDqQAJwcHVioIkszZpTo7LlznmNDTDk1Fpt0ctz1vYl3cpQLecrlcpQvlDu0RJEtEAABEAABEAABEAABEAABEAABEAABEAABEAABEACBMAE4OcJEOuR4%2BowZ7ORQIzhGAguND4npqXiaqmFvWip/8XExZVX8KA7p5Ljzru%2B1jlq54Dkrcrk8ddeSii1TIZdrxCsQ3BxJuSEcCIAACIAACIDAWBGoVytUKhapq6tLbcUilap1qmdMtF5pyCtVoxLqdaqWilQshtKrVMckvebzV6d6tRTUt6tIxVKFqlkA1atUKnZRsRIfmTnqZRPZL1ICUdFysJ1JoZ8Q0TxfmyKtkN3ispOq1itUjJRDsD779cNRxiEZpltFJuf%2Br1KJdWlxXXAnjKtjQaBaUu0wl6tWtxznstehschIBpkJ8l4Uz6ZShSqZGt8MOiEKCIAACJwPBFK%2B%2B1mRcDteIkMPQIumv7uEwrIMy7NPPAea6DNoSkzoLpwcE4p/7BKfPn16w8nRcGwMa9NTac4Nfx0O3cHRWIuj4eRQU1TJ6arUVFXKyXFX6zKSyclBhJEcrSsCSAIBEAABEAABEGiGQJ0quqPBZDwrhjoeiZJTHZew0c1zFpjS4XOlDI4DW3qtyF%2BcDOEMSgTFC6TnP4mTo1qydPCYl7jeOsN2Ov3i2HRRV6b6I1C1QnacjHRlFyjlkIMi4CAMlE0XFUsW511YRpqKpCkTdIS1ri5oSWB3PAnEGXdC9Uuvexmr0Hjmzp1W6rx3hqHLDQVXQQAEQGBsCaR794vRhdtxV/9Bfz8zvLewjLh3YEPcGPXa6TKcHO1UGi3U5UHh5Dh7jsRojbGYqkrIlE6OO%2B6ceCdHC9FBVAyBWrmbCvk85ZMPtYmRGLw81vKDqeEIBEAABEAABFpLQBnQQ6M2xEgLORJDGNSKlXQjLGTnJBxPnvdkBp0Zegerq8vVMTIwkHJD6TWfv2AnTIxskT8xekF9yR/fyfJHOwQ7a6mcHMJQXq9bN6lX1v8s%2BjXP121QuE4AACAASURBVK5t87JbV3ZGLdlBUfS%2BKA%2BWTZWqlZJWP7qoy2R9ZhmyXsTXo6guysHnG7uzyIhKxZmJJRCsT437ntscU53zw0yk1nJEV5J2zaqnbMuF41aMJAy1edVqlSri3go750Ntv1U%2BLkwKAi2pS5Mip1ASBCaWQJZ3v1iNuR23vcsH38%2BMI5FZRvRZUA2PPp/E7T%2BcHLG1aXIGePDBB9nJIaelklNT%2BVNSDXsOELGouDx2LzYuRnIER3FIJ8ftd97ZOkgZR3K0TgFIchOoUXfenxpsbJwcYy3fnTtcBQEQAAEQAIFmCXiGZEfnQP9C3GSjNaevOi9BY5dmjE3wZXswrjkl/6wtPaKm86d3spR/QymjG6ktgOphY7eY5qrxJXaSPEpjf5KwSrHke83o1zRfh5pNy25B2TnUI%2BKydzkVVN0UDohIFdFksNE2Esiphajk/tRGRVmvXPrEyMLl9iag1RejUWhCtVd1vam2StbnJKPTGlOr8EgWx7NsQtEg8ZQEWlSXUqaK4CBwPhFo5t0vlhO342Ynh3yvNb4XSeEsw/5Ok62PIhNoj384OdqjHFquxQMPPMhrckgnhvz3nB5yzY0hMT3VMGVxcLCT4w44OVpegG0rcKydEGMtv23BQjEQAAEQAIEOIVCtxI3QUI6JxIYrNsSFOjcJOiz/f3vnluQ2jqzhWpcWpDdv4Zxpt2350u5W32/zoA30a0VoGfWsDdQGZtwz9gmcAElkJkHcKFEu0fE5wiFegETiAwgV8hdAj1UmLa0Bq1x5zrnL6qeBluSv8Ic%2BIP4mV58YG8/CtkV6rc50TtpzOqXa95PNflslvVbz7zK%2BZX8vs611OL/tyv61iRxdhxZRa%2BKL9F3/joHwTpzouSm6ofXcHcLKkXxAoGiKm7dPwPQXRI7QXPoMdGPY7YEJjvLZTEDbtPYd1GyShBCAgCGgz9g5f/sZQ%2BlD%2BXt/%2BveM/s1ceS%2Bd2Cj8TSPfiRVbaS9v4ioix000w/JO/PnPf3YrObyAce3tqt6%2B%2B2a5CrCSYzmWV7F0bRHi2vavAgWjEIAABCAAgRkEzESo8Rfm8gutKL1MbGrihUxaChMbU4NceSZJ4bBQP/Ej8Qt8a7GYztv3Lyj3W02FTFpmPYAzJ22wP%2BfzUv9qZan/kwB/LWv1fsF2sU2M4dZ0JoscSt5aPzV%2Bxn1/ZOMMQVGCAH7rt7B9Ws0fqQEHayNw022s/bw%2BrhXAS5%2Be04/12Zm9tWLBFW49FYGF%2BtJTuU%2B5ELh5Av4Zu%2BRv00oFZRyPRA653iBKSNrSd4GO/Rd971Sqc83biBzXpPuEtv/880/36dMn121H5bekMttShRUdsnojrOr4O7xcPP6cblPlV3H0Kzk%2Bujfv3i1X0zNFjvttv4XS3WbvTiVvTvduv924zbDl0t3dsPXSZuv29/mc4T0RIb3/3NTy7DeuSy8%2BnboXpG%2BGMvt7G7ctlNtX5eTu91u32Qz2xOeN2%2B7vi/U9x%2B8UvlOoi/U9Ot7eO%2BdOeyf16y6krDn/pviezd2d88ma7WfMcRkCEIAABCCwHgJzgw1hwjGdlIgYEQd6JzCCjYq40OULaaflTcwmLxTqJxOsaJI2sRN8aJi0dXkLZRZsR5rRJOVyF%2Bb4Vyu1bOthWL3gRaD5/wq2r9Z2xsvmgLP6OQnARjbkGUmuCjJld4dqt5vcR7bi1Jx/AQRmtnF4r4H/pW74v9sdunddTGiI7cz7Y0IGebb68VnEa1NGKCt8znq8xf68MV39KOd7fHxwx0PY2q2BS6h3/BnsRO8GmfKNntPYjpxrupQgLPUL35%2BhfMO9X4knBv0ysum7gXb9%2B7dsqtzxrP4zGJn46X2IeWd8kLymTqEPhc9ZfSlXMa5DAAIJAjoGXSwYyDhu/n5u/Y4JnomNwphubK51bEDkCA3%2BhX3%2B0Ykc/yfv20gKG17cuEDg8CLHfz9%2BdG/erkHk6AUGK1JMjpNBeV1ZMEkfgvwiYow7kQTu/f3TvduG9InP7PstrGiQyHd3t3VeW5j%2BO9/vqa15IoTUexAwpvYMi4G5zZPjnGyeqXGuQAACEIAABG6cgAbwWyYQEqQIgRhTOwngJu6ZZH6TKXcYghy1iVapvLHN3JmWFdev3bZODFPBqWnJmr5WP8si9m9qd6krc/yrlZnnq9s9%2BUBjYRKbLSJv%2B3ptZ5yRyXXNd%2BU56R%2BxDTlvEPgk7VB%2BfG5c5fALIdDcxqbP5QLGiXFYnpvU%2B2M6hPrMhb5s84RAdPw5a%2BxqCWylmlPY5MTmx07ciH2bnO/8qqhUAeFaH7Sf5LOcRxXWtiiP95ousA0l%2Bk/h7NvN1HXqRwgqPrhDJMDYtGVh2fhi62WPE/1n6qfpLzbvcBzzkDom0gbfR2gtII4hAIELCehzHz%2Bbsw3LOG7Go/BcZ8aOSRliI/c3lh%2BLB6G61eakkKe/gMjx9G1wFQ9%2B/%2BOPfiXHf/5zve2q/v2hEzlev327XB3kF/4bt88vrJiUV1vJIff9Cozt3o0WT5xO7nS/dZt9LBdYoaBfcaEuDasrgvCQiMBL4H6zdVu/cmSzdfcnY%2BHerHq4S9XXiAFdXltt7/Pebf11e7k7vszvibnRBbWdFWacpkmtrBEuSYFG8%2BbtjxziBAIQgAAEILAqAhp0yE0ybHU0oJEKRDTbkolNLlgVyiyXF1KVPks%2ByeQpVZnIqKRtmmjNmUhqHUOQJ3xOfzEcOXX26Rz/yoWU%2BPqcl6zkKNmW9li87Ux9JdBYeTYkXaI/yz21Ib5X%2BpKkC3VM2DLecvglEGhqY31%2BvXh4eHh0GrOPftkf%2Bo6wMXkT/U%2BfuRC4kozdqoHjEFS/KEAm478%2BE7aU/LEZK0v1Cu8eUijO7yX4cAzvtPFBs1T9%2BpLluevsHMeCyOOje3w4uN3RrkxTpmUumq4scgyrUHa27Eh4ORxd3xY7dzia9h%2B9qD3H1/gxu/9YMebQiyydaKSw/eqQXQh2ZsVt9aHMLN8buAMBCMwlsOBzJ%2BO4H0vV7jM/HrS6JTamY5Vfkaci7gybrWV/xnSIHJ8R9ucs6vffVeToVmtEqzbCNlZ%2By6r0//wWVd1WVf/%2B4P41iBy7N7ctcmhQ3W%2BNpCJDrT00nxcnMqkLoozm9wJHZhstu1IjFkoKtjPedJe13PP8Ltl2RsAoihCmXqN05npc3b5cRI4yf%2B5CAAIQgMCqCUhALRGcTVVMJiSZCYexN9m2R%2ByZyZAPIpVeIlsrT2xmDow/qXIkmDUJmE3tSdpEYHCaWuuYKneU3vgYxI3JZ/WXxyOLDScz/CtZM75X61myk7pXsS3tsXjbGWfEh%2BkEXFMpy2TgNGUjdU0N9kepNKlrcT7O102goY1HQoTGlsf1lrEz0XeljGj8NdfTj5X29Yue95Jv41pEZ1p%2BLBIok8oKKVPH2IYvbGwnBzdyywT4ylzy/sdlp3zzaWTcG0SEZDs117GwoqXQRpZR9nu%2B4oPfZmsRwSxuCs4hAIECgQWfOxkjDu4QVlsUxOOkU2JDtxWM//6dbtGXtHTTFxE5brp5znfut99/n76TI7ybIytsBMGjInB8%2BLsTOETkeP3mfEfjnGcG9mWlxkRMMKsh0lH12IPhXPOVs%2BWD8io29O%2BdSBek%2BSdCyFksLvc77We4qv6OxItw23xq/cNqE817l4WqaWr2TVEcQgACEIAABG6fgA1CLBi4HwdA%2Br3hH/2vX8MvYKPtNfJBoQsnY9X6qf1cQMk2ogSXFmQV7AufIabWszq6w24n%2B%2BwnA%2BjBwOxPrXuef8VolW8lf%2Bl21bb6v3zbGcfEj0Sg2A2/6Db9OckyaaPuvzxHtr8lbRl/OVw/gWob62qGZIBbCGgfS/VL6V8SlNL0%2BWdK06RsStG1AwlspZ6rUmYtf%2ByjMmnxa1r3UKbaGdsP93Of6le5fE2Xsq9%2BFbhI/3jmsgKDFUPs%2BNG5r3U8t/%2BonyVBydR14oN3RO%2BXmeWYcx0CEJhPYMHnTsZxI1Akn/WClykbsgrM2i0IsgXzt3ILkeNWWmJhP3797TcROf7666%2BrbFkVRI5Xr18v5/1ZgX3/HuvMi8fPtKcvxg4B%2BnwVpewocD8N8qdtSLpYoDGrHrwAkl1NYs1Kfc/325qbHs8RITStFzX8lmD9%2BzZKvmkeRI4pfa5AAAIQgMA6CXTbbYSJROukRIIrhQBMhyPaViOUYz799irVX3E2lzdtg7b6qQ%2BpgFNs9ZoiR1yWPbcBpeWCQVr3c2y28bW1aD9us63%2BL992xlfpg2aybfqx/cVhlqPYiJ4bmdxH17viM4HInC3jMocrJ1BrY%2Bk3mdV0pvoyZiWj2eNnyD93fX8u2dU82f5uys8eSlmpvp/NNXqX0%2Bi5n2tPGEdB%2Brl2xNVWLppu5P9gR8f6Uhvo2FBqA2n7%2BPtd6lgqo3dIbET9p81Psyom9qEzryxK9RDEHEAAAgsQWPC5s2OJGVNL4uukAmJj545%2B28Xwg6juR1EP7jjaYjAaryfGbvcCIsftts1Fnv3662/u46dPma2owoqN8Pm3%2B/B3v3rjw4e/XbcdVe5z2KbKCxwicuxuV%2BQQASH5/oc8Ys03iCfh3Rulz5zIEYsXUbFSViKd3BvK3UTv9YhMuTh97iXeo%2BuR37HN8flMEcIKNUMdysXNtD92jjMIQAACEIDAjREYCxBzloHnAh65Cvp9uccrEZ45/46J/oWvGqiJ4idibm55fcZ59ZtTxpy0y/5KVSelsyaPQjJ1oDbnBZjm8U2VnL82z/ac9piTduSfnbjnxI2D3Td/lLs/ERtxQDffBhJEjIODWVuJcrm0TgKVNpa%2BkemPVniT49wgK2WpiJdLOnTmujjdQt0Gtlp3hPJ2jb923FIm9cB97176%2B2e%2BnVDZ/LMcUvSfmq4ocsTP/chI2vdRErvtVmRL66htLv0k16eiTiE2ItutPsQsbFvGNjiHAASWJKBj0MXPnYzjw7gr589canxL1kLyxH8f2dTq87Irmm0Z1z1G5Lgu3yez/suvvzaIHDPEDS96RAJHEDlevtotV0/5tX/qRdz5YmQ1RSQUSNA/up631N%2BRfCVRI74XRe/FRqXsWrr%2BBeOx2NK/CD2uh9iKfSudR37HNsfn80UIaRvvQ4VF8zs/xk5xBgEIQAACELhBAvYlfv2vptqdDIGV0kSk3ZoGq3L2zilvfv0k%2BF0J1ljRom3yppOyiyeSNmAlW8vMYJ1Meo5/8/kmi05enG/7em1nHJSgauJXhiZZ8dDaiAK6EiwctWvo%2B9H7EnwhBVtFH7i5HgKVNtY%2Bc36Q2sKQ58gHuGeMgxeNa02BLevlcCz5xr/oFSZV/4PN9DM2306w1zqearrU90hb%2Bep7pD0EZ7rPnC25nhM0UtejgsRGhXc5nbK4qC%2BNas0JBCBQJrDgcyfjsYrL9vuk6bkWG7m5wFAb%2BV4cj/3lut7OXUSO22mLRT35%2BRcVOa69XdWLNYgc567kqAbl880mgkPFRms6d7p3%2B%2B3GbaxgEdlutpV3u3JnpsgxWclRE69m2q94y20IQAACEIDAkxAwE4R6IGvqYTlYMU1fvSITG50c2TyzyzuzflLOKMhsPQnHGlhqmrgtvd94hVfwsv1z5kT3TL5N/pxp%2B3ptZ7wW3yoTcJNlcli0kehXpbYu2pqUzIU1Eqi0sfT7SoC5qepSVhBMav185riRc0L6eK28sQENoI2/N4RJdRwP9vS5s/H7%2BXaCvVYumu7JRY4L%2Bo9wqtgop1MWbd%2BpgTWfEIDA%2BQQWfO5kHLfjsdr3K8Ts%2BJr0WWzUvgt0zF7jeIHIkWz99V/8%2BZdfhpUc49Uafjuq6pZUdquqxOqNsFVVWMnx4uWr5YAtvJJD361RC65HVRA/Su%2BPiPJEp62CQ2s6NX9y99vN8H6L6KXmC/it5aSO5ogQmta/k0NWdETCzLgUzcM7OcZkOIMABCAAgbUQMJODw4OLfkzeUAmdtFQnLA3WfBIJViUNzi3vgvq1TrAkGFibiAUAWoclJmQSLGoO4gU/cp9z/LuAb654uX6B7au1nTi3zMqJSt%2BRtu0ChpV2qdgynnO4VgK1NpZ%2BbwNL51RW%2B5oPuMuYXAxca56LxjWpQ%2Bt42n1pDO8MSaxwmmsvx3iuHcGuXFLihSQz4ncq3Xgs0FzjIx0zk1%2BfQ%2BKsLanj%2Bf0na3vsqCunU2YX9aWoTE4hAIESgQWfu%2BxYomPUs2e7stAhNmrfBWpzjeMFIkepT6743k8//%2Bw%2BfvxUfr%2BGFTNSxxWBI4gcX9%2ByyGFWEswKmp%2Bbz/SZVvGiNZ0x7ey2Tl5AkH8L%2BC22kgftIoTUK6yiafKt3X7SPS5CAAIQgAAEnpiABK9KEZGSjzIJOT8oMjKfCzCFRDPLu6x%2BbROncrAmOG4/F5xI2sBYMQBpy68dt/t3Gd%2ByH5fZvlbbGZ9rfdUkzR7WbMj9Z%2B5wPLpdt11MZsIvaTP3s05wYzUEam0s9xPB/hmVlDEtCKdNdtvHjaIrMsY39mPjW3pP9raxIPg0qbveGJ6/uWyVS3GlpK1H4vtY/CqO81rXhIlQk7zAYHw4N1jY5icvHpfG4AACN0NAx6pzn3%2BpiozjibmBGWe80HHM/bpKbBTS%2BAIlXcPqEHHwdg4QOW6nLRb15KefVOS49nZVz1%2B8XM53WYkwb%2BVFaZWA3Ls702Yt3%2BnebfdGaBhoSJC/uHLB6cvCK%2BnGkFUMGIkczumKiTP9HpcTn%2BXLHaU0gsZYgwkrUHJt0Wh/VBgnEIAABCAAgVshEAIilQlEwd0QiL54QuTLeAz%2B5F9MOK%2B8YO/8%2BknAJjcRM5O1UlBpjHC5iaT6t%2BTkrtW/y/mOudizy20rm0z7n9V2xkfJn7FvkmYPG2yEPi8vAM51tAZbWT%2B4sQ4CDW2s/aXSL/14e3yY1lvKGI8p1efJCq65PjotbXpFAlYV/92jezgeRHgoBcuUybhOk8JN3VPfaWqn5tvY8ix2XshM8BMb1xQ57ErK3HdeqFqm/7T52S5ypFgEF/iEAASWJND6t19DmTKOJ0QOn13u%2B%2B0Qa2lK4234W7Fgp8Hdp0yCyPGU9K9Y9o8//TR/JUfDyg27VVVYyfH86xfL1cSKHPcndzoV/ptSRchICgX3bivvsdi4zfbenU4m8%2Bnk7vdbt4mFChOov7vbdELGJF94R4aN5A%2BmLxU5fP7Ndu/uPQPjrndet6tKiAUX%2Bh1se06pf8Laiyj3g2envVN8RqiYtEfpXl9a3X7KK65BAAIQgAAEboCATDIO7uHx0T22/LduS0CoNAGxGXxg49AF1nxZ8u8xClblgjhzy7u0fp2DdgI1fiH740P4ZX3LS3mltl7Nccddv899KpA2SumDeIdj3z7mxqMPMO12skXLsoGgRv8W4Ptw6Ouwi4N6C9h27hptZxshtH97/ze5%2B8OWPi1pfJ8plCXpCmkmDnBhVQRa2ljS9P3FCxl2uPUn/rnrVgXFz50Zm6arDnRcmN7rKY5EgIdhjH88upSWkuUuz34/3o6/lx7cw8PRHYdxQ4S/0nPRFeTHy37M9Xn8eDNhYgWT3HdQNKZk7cQVjtrkGNh437qxvG%2BrXfBx0i41USDQ1DEvYSIkyq/k6PwJ49o5/afVz3q6RfqS1JgDCECgTkDH%2BNrfplVbMo5nBAw/9B3N37CpMVdspL8LjnbM9uN6dklI1dsnTYDI8aT4r1f4Dz%2B2ihwf3L/PEDeC2PHfjx/dV1cROe7knRN3IlCMr9ntpyQwPgmqD4z9aovNOP/EbiqoPxIM8vmtL6FVlxA5Jj5GLFLlduWf6/coX0JA8cZHaZRJwCf1zq0kMfmT/pv7tv7BfuDLJwQgAAEIQODmCMgEQoM/GjRKX7OTCJmglKIpUaUlT7ftzrQMH9A38scot%2BRtLe/C%2BknhowDV1OdcwE/yTw7aJ5JS5wwvCdhNyrjkQqN/l/IdcY0C85faDtUflbFE2wXD3Qy9vH2USZo9FP%2Bi%2Bo8yaHsU%2B1qTrZFhTtZGoLWNJV2iz5uxxI7nHoWON5n%2BaOzGeTuU5r79LmkdsjsbM5/9Tmhoasex0GH9s8dVeyJKFNgmKqxsU/k8b/Ocl/KngoFS/wVEDm8r046Wkz9O9QGpZ9FP09dy6TI%2BJNBI7TmAAAQuIaBjUOrZnmVZxvG8yOHtqZiZWMEmNlJjpr22c4eVChyeASLHrJ61nsQ//PijrOS49nZV/3j%2B9XJgZCWHBs9toNse2wB5VeToPDy50/3ebTdhy6ShjE1ilcaoRsNKj1gkqeSTYH9OeBnKyKY73bu9X2GSKHeyGmXkbzg5z%2B/aSo7O%2BslzNG202bq9X9Rh2s%2B2T/AofEp7FYSQpP1ggE8IQAACEIDALRJonkDoZEInPm3BlEm1Hx%2B6X%2BH27xYIdneyWmGSXi6cUd5F9ZOChwPz6%2BcQJNz5lyY%2BZkWZ2IKez5hIBl7hF76m7H6Fh1pd7qjRvwX41ldyhD5S/9S%2BGZNYsu2MbQnCZQLCJmn2sNXGwLoY4Gu1lXWGGzdPYFYbDyvkEmPHZHWHr7h5nvPPkg1KZfr943G0auLZ7pDfcz0F3PgRB9W7893O7bzNs8Zev3DC%2BzesZAnj6bOW7yDr7KPYGfnovxPilTMmWyjb5tFxXMfd1Mq8NvGg7XuyzdbM/jPUs812g8jh7V3alwx7DiEAgRoBHYNK3wE1K919GcfLIodd2ezHRS8yyz%2Bxkfn7z4/j8ao8ybyeA0SO9bTVLE%2B//8GLHB8vWqURVmuUPv1KjkVFjlm1JDEEIAABCEAAAhD4QgiEyUfuV5hLV/Nzl7e0/9iDAAQgAAEIQAACEIAABCAwEEDk%2BEK7wv6HH5wXIEoCxRL3fBn/%2B9XzL5Qi1YIABCAAAQhAAAKfg8CCv/Zqcvdzl9fkFIkgAAEIQAACEIAABCAAAQicRQCR4yxst59p//33ncjhRYhr//%2Bff3x1%2B0DwEAIQgAAEIAABCNwqAdkypbYMfaEKfO7yFnIbMxCAAAQgAAEIQAACEIAABFIEEDlSVL6Aa9/tv3ff7ffu2%2B/27v2337n3337rvnn/rXv3/r1798179/bdN%2B7Nu3fuzdt37vXbt2735q3bvX7jXr1%2B7V7tXruXr3buhf//8pX7%2BuUr9/zFS/f86xfdS8b99lT%2Bv1/B4QUORI4voMNQBQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACKySAyLHCRsNlCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEnEPkoBdAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCwSgKIHKtsNpyGAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAkYM%2BAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAwCoJIHKsstlwGgIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAUQO%2BgAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAKrJIDIscpmw2kIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQQOegDEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIrJIAIscqmw2nIQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQQOSgD0AAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEILBKAogcq2w2nIYABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQACRgz4AAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIDAKgkgcqyy2XAaAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABRA76AAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAqskgMixymbDaQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABBA56AMQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQiskgAixyqbDachAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBA5KAPQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgsEoCiByrbDachgAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAJGDPgABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgMAqCSByrLLZcBoCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAFEDvoABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACqySAyLHKZsNpCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEEDnoAxCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCKySACLHKpsNpyEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEEDkoA9AAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCwSgKIHKtsNpyGAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAkYM%2BAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAwCoJIHKsstlwGgIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAUQO%2BgAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAKrJIDIscpmw2kIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQQOegDEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIrJIAIscqmw2nIQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQQOSgD0AAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEILBKAogcq2w2nIYABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQACRgz4AAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIDAKgkgcqyy2XAacKDeMgAAANtJREFUAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABRA76AAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAqskgMixymbDaQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABBA56AMQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQiskgAixyqbDachAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhBA5KAPQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgsEoC/w%2BnwZbLeiqJ9gAAAABJRU5ErkJggg%3D%3D?action=content||width="100%"}} | {{attachment:vierDWIFolder.JPG||height="150",width="580"}} |
Line 48: | Line 57: |
Where the *.bval is a text file that contains the value of the gradient, and the *.bvec is also a text file that contaons the orientation of the gradient. The nii.gz file is the NifTi file of the DWI where the images are stored. | Where the *.bval is a text file that contains the value of the gradient, and the *.bvec is also a text file that contains the orientation of the gradient. The nii.gz file is the NifTi file of the DWI where the images are stored. |
Line 51: | Line 60: |
First you need to create a new subject in your protocole, let call it the 'BrainSuiteSubject'. Then import the T1 MRI of the subject and set the fidicials points as explained in the previous tutorial. | === Load the T1 MRI data to brainstorm === First, you need to create a new subject in your protocol, let call it the 'BrainSuiteSubject'. Then import the T1 MRI of the subject and set the fiducials points as explained in the [[https://neuroimage.usc.edu/brainstorm/Tutorials/ImportAnatomy|previous tutorial]]. |
Line 53: | Line 63: |
{{/brainstorm/data%3Aimage/png%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAAekAAAB5CAYAAAAd39lgAAAbvElEQVR4Ae2d6dPUxLfH57%2BxeM8L593vlQWoF0uu4i1uCW5D%2BcblqmVpuYAoWqiPIgWu4PKAPriAheWDAiIqoLiglpaWD7jvO%2B6759bpmdPp9HQ66elkMst3qk4lk6S7T3%2BS9Den00kahw8fpiNHjtCyZcuo6t/k5CSxLV%2B%2BnBYvXqxs4cKFxLZgwQKaP3%2B%2Bsnnz5hHb3Llzac6cOX2zquuP/EFgsAhMU6vRoIayJrUmpmlmsByENyAw9gQasSIdIu4Q6bE/3gAABEAABEAggEC0SAeUhU1BAARAAARAAAQCCESLdEgkHeAXNgUBEAABEACBsScQLdJjTxAAQAAEQAAEQKAiAtEijUi6oj2DbEEABEAABMaeQLRIjz1BAAABEAABEACBighEizQi6Yr2DLIFARAAARAYewLRIj32BAEABEAABEAABCoiEC3SiKQr2jPIFgRAAARAYOwJRIv02BMEABAAARAAARCoiEC0SCOSrmjPIFsQAAEQAIGxJxAt0mNPEABAAARAAARAoCIC0SKNSLqiPYNsQQAEQAAExp5AtEiPPUEAAAEQAAEQAIGKCESLNCLpivYMsgUBEAABEBh7AtEiPfYEAQAEQAAEQAAEKiIQLdKIpCvaM8gWBEAABEBg7AlEi/TYEwQAEAABEAABEKiIQLRII5KuaM8gWxAAARAAgbEnEC3SY08QAEAABEAABECgIgLRIo1IuqI9g2xBAARAAATGnkC0SIcQfPbZZ8m2PXv2ENvTTz9Nu3fvVrZz505i27FjBz355JPKpqenie3xxx%2Bnxx57TNnWrVuJbcuWLfTwww8r27x5M7FNTU3RAw88oGzTpk3EtnHjRpqcnMy0kLpgWxAAARAAARComkC0SIdE0rZA83%2BIdNW7GPmDAAiAAAgMK4FokQ6puIj066%2B/Th9%2B%2BKGyDz74gNjef/99be%2B%2B%2By6JHT58mNgOHTqkbGZmht555x1lb7/9NrG99dZb2t58801ie%2BONN7RxeWyvvfYavfrqq8p4nu3BBx%2Bka665RllIXbAtCIAACIAACFRNIFqke4mkWaCr%2Bv37779k299//01if/31F7HJ/23bttHSpUuVVeUT8gUBEAABEACBXghkijRHnLfffjutXr26FLvtttv0/ejhEukZmmg2qNHIsWaTWhPTNNPLXigjzcwENTs%2BtqbLyNDOY4amJ1rUbDYtFk1qtiZoeqaimufWa4amuXzb3dL%2B11RvmqZWZ382J0LZxqQtDZyVUdX7ySoOf0FgRAhkivStt96qo02JOmOncv%2BZu7flJ93dDz30EF100UXKrr76amK7/PLL9bL9%2B/cTG2//559/KpM8eGpHz//884/2/48//iDbXnzxRWJbs2YNLVq0SJmZXzJfUKS1iDcpuE1NCut9LlfMIrKebukLAO/FSnOi/IsUT71mtF%2BtSkQ6yT/vAq2Ceo%2BQSCccq9lPvR/ZSAkCg08gU6Q5gpau4bKmQy/SmSHqDM1MT1BLR9wj1BhNt5LIuemImGc6kaZcpFQh1Bnn0cyERPUV8K693oMYDWfsiJzFle6nnLKxGgSGnYBXpCViLWvKj1mx8SAx%2BcnjUTfeeKOOmicmJoht1apVtHLlSmX33HMPsT3//PP07bffKpPo2YyaeV7%2By8XFb7/9RrYdOHCA2G666SY66aSTlIlP6akRSWeKdCeFEfWFd1GmSx2Mf4Nd9%2Boa/0GoN0R6MM4BeAEC9RLwirTdRRz7/6mnniK29957T3dPn3322cR27rnn0oUXXqiM71%2BzcZf7unXrlF166aXE9sgjj6gub%2B72NgVZLiREmPm/%2BPvLL7%2BQbS%2B88AKx3XDDDTR//nxl7l0R0GBTyLbu0gZqqb7oKNaFP93qdAv3KZquTKQHot4Q6YE6F%2BAMCNREwCvSv//%2BO5Vpoy/SRJlCpRt%2B7prlQTTSVdugRrOVvo8tXciZg7QcR4vOv0GpgN9ePjNNLSvf9sAvX57FRJp0F7HV/Wz74CgqSWuV5Uqry%2Bm%2BV5yqe6ecGVedmfl0xoAsXabli8tvXqb9KbHe9j3pmWmaMI%2BZBg/YyxqomC/wwUyMuqt7zPrWDu%2BDjEGTmkux/WQUgVkQAIEOAa9I213Esf/l7WH8nLNEuccddxyxzZs3j%2BbMmaPs448/JjZ%2B3nnv3r3KLrnkEmLj55r5WWk28eeTTz5Rz0Hzs9DPPfecsmeeeUa/weyJJ54gNn5jmbytTPLl7nQp131UhEXHWqRttdANf4taEnHKfdyG0bjrwVDdDZs5aMvOnnT%2BHpFu%2BQaAOQTJyLORKQhuaqmlRj5dfsuGukG3/HCl1dt2M7LzT10Mad5GOlfUb5RZW71NkQ7db2ZaxyjGnpio/WScC0VYBuwnOQwwBQEQSBPwivSvv/5KZdrIi7TRuNtiYYooi21TP641Q9M6oksioIYapGXuLB6cZoqsIey8WVbZxnIl8s2W8bgUD/oyIvoup42eAW6Ue33MzPDBUUS7krpBLyDSHSx53d3JepO3gkUz/DiZCI3DKX2xVVe9DaFtX5w1qaWPE0ofC10XGslxZI%2BNKItJcvy2fZELSLu89qEpx5h1zHb2IyYgAALZBLwi/fPPP1OZJhEtR9Jy7/iUU04hNo5mjz76aGUvv/wysXHkKwPGzjvvPGLje9JffvmlMumK54FkH330kTLzbWTyJjJ54xg/%2B/3KK68ok4ib3zZWRiSdGt3d1WimRZQF2NXRmjSg2Y1Zsk1BMTMEsmFG7MYxkQiSq1zuHjciTxE21d3KXcZZXa5GAYYPDj1sb1i2SKfKdNE2u6ktlsqjmuttibSTm1HHtDhmiLSxvSn4xp4yuu4tJkbadFnt1Mlx2X0M%2BdalysYfEACBLgJekf7pp5%2BoTJOPZLCQyjPXZ555JrEdc8wxdNRRRynjj2iw8ctULrvsMmXyVrBHH31U3yeXLnOO9n/88Udl33//PbF99913ehT4V199RWxffPEFffbZZ8q4O5wtSKS1QLlEq7OMI9UuzGmRdjVyriTOZaFiltO4qjJ0nhm%2Bd%2B6h68jTyaEd6Tnl0PDBKTbshPYhWxzstL7GX6/LuCAStvoCxc5cbdAeO1BLvU2R9tRB%2B5/axi3SMUx02owLvcyeHHXoI5KW4w1TEAgl4BXpH374gUw79owHKMTMtDw/FiLNg2iMbkm9Q4oIld7YnOH77/wFsAlqWQOHUrcbs/LPWm4WkSWQ5jadefZlgu%2BROqPr9iC4rouUGB88abOFI7l3mndBpPNIiVx3xfteb0OkfXXQ/qfE0yXScUz0xYDzYqabl7nE7aO5BeZBAASyCHhFWqJSmYYING8r6WTK78lm449iSHe3fEBjw4YNtHjxYmXy2NUtt9yinpfmZ6aXLFmi7K677lLpOQ/piv/000/1BzbMz1PKZymly/zuu%2B%2Bm9evXK5NntvnNZmV0d5MakS0RA98DtWJKj9jYO6fddZ7kJff70tOCEWeRcgNEuttXe9QxC7XVnR/jgydtduOfiFSamacHJCVydi27/89MV1xvQ6S9uujcd0n9k%2BMwWRbOJBF4HkgX%2BsveT6E5YXsQGD8CXpHmLuMybaRFunPsJA1SQRG1jjkdsaS6lPlxm/YjQzx4rN3IFszfI3K66Kw89QZFZrhrOBHBVFse44MnbcLa7qaPEaQidTW3qajeAyrSieibDPzz2fvJnw5rQQAEiLwi/c0331CZxveT2fgzkjJqnN/ZzcYvL5FPRl5xxRXEdtVVV9G1116r7LTTTiM2Xn7nnXcqk/vQfK%2BZX5DCtm/fPmX8iJV8GlOi5t27d6uXqfDz2jzPtmLFinIiaTmaDFFJNWjG8pSASbrUvbtG9kcrsgQ1K/%2Bs5Ua57vvBidCl6mGm65rPSNOzD%2Bl7%2BTa37MY/w48uf10LekmbkSam3hWKdPH9KXwQSQsJTEGg3wS8Iv31119TmbZlyxZi4%2B84y/1qef6Zu7ZFsFstfpa4RRdccAFdeeWVyk4//XRiY6GWbvEjR44QG/vIXd5s8ow1j/aWb1aLgPM3qqV7XV6sMjgiXawhTISp6ki6mD/pAzZJkxKCGLHypE1Y2JF04kd492wvaZM0pdXbEOlUnmng5GbgumhIfAxnYjyKZ18paX%2By83f7qBNiBgRAwEPAK9LyqFNZ07EQaR3pWvelPWLT3j%2BuhtXec0ZD2KhapPnRa7kvbpVluyX/s%2BqYtVzSqcHd0lVuleVJm/hni7QhKoH3mtmlJF/LF8Pf1GyWj1nLjcTJLQK7rOR48ImqTp8SzyStKfB62ygm3azb1XGXyesSnllpDSCYBQEQSBHwijR3I5dp/LYwtpdeeklH6Oeccw6x8Ycutm7dquzmm28mtvPPP59OPPFEZTzPduqpp9Kxxx6rTB6t4ueh5ZGqqakpYrv//vtJBo7de%2B%2B9xMYDyHiAGtuuXbuUcZd6KQPHOliThtBqdHMbbEOAUw2usb%2BMCwB%2BFWNqbFpW/lnLjWzd3d28QdLw8qtLXYPWk2zMe7N2Y2zk46ybsb5ovfIaf6Pe2SKXxdzwp656m%2BxtJgLdOB7SWBP/TZE2H5MKZmLwTOXZ8cUnxL51UhVMQQAE3AS8Iv35559TmTbSIs2ju81HpNKtZvYbwYz9kgh89xuyUnl3BpWlijAa0ULLjXKzRdp8fpkj3c47mlMD1%2B3PdFqvJe2Uk1W31EtgVL0KXnxwvlqkrDSuMlv8mc2k0u13V2dE76m8a6p3SqQ7PhgVSL19zh5Nb6S1BTW1HwKZJGnTjxmavtjlKeI5%2BynZK5gDARCwCXhFWl78UdZ08%2BbNxMZvE5P7yWvWrCE2jqSvv/56ZRdffDGxnXHGGXTCCScoO%2Buss4iNv5Yl97Elyuf7zPJWMRksxt%2BuNgeMmYPG%2BH70zp07lQVF0qkR19LAO6ZdjaZ/AFSyU5IIyPmYjPooxIR%2BnWWqQaxKpNn11OtIHfXVXNKNd1IvlQm19HZ2Hi2azmrIs%2BrFmRvrhFeKif0hE2f57HPKU/2n1nobQtuaSPa51FNPnS/PSY6jNA8FLX0xGcTE6HlwpXMd94X2k0aOGRAAAYuAV6RlMFZZU3mG%2BeDBg/oZZ3lVKHdvy1vFuEub7eSTT6bjjz9embw%2BlAeScVc2m1w88GAx/nQl26FDhwrZjh07iG358uXFu7tdDZNe1qRmoS8ruSPNZL%2B0I/LUW65S78w2GkpTXQzBMhebQpZanhSYG5G2N5WIuakvEkQomin/zIyt%2Bc6XnJK6GV9y6kWkHRcQ3aLEFxkTXV/%2B4veQq69IGdG15W3nb031NkWaLyIcX8Fq6fe/2577RLq9bQwTdfFivsyG978R5dve8H/7gse1n1zpsAwExp1Apkjzt5z561Jl2nCK9LgfIqj/8BHIF%2BnhqxM8BoHxJJAp0vwxCn539urVq0sxfg5606ZNyvjjFhL58mNRbPwGMX40i%2B3AgQPK9u/frz89KR/EMKdm17Y892xO5TEriZp5Kl/ikgh%2B2bJlOZH0eB4YqPUwE0hEOrP3ZJirB99BYIwIZIp0FQwg0lVQRZ4gkCbAn%2BFs34pwD6hLb41/IAACg0wgWqQ5Ei3627hxI7Hdd999%2BhOUd9xxB7GtXbtWPXbF96ZXrVql7LrrrqOVK1dmmryhjN%2B/zS8lyTK%2B72wb%2B83GX%2BDyP4JVtHbYDgTqJJBEzzJWoOsd6nW6h7JBAAR6IhAt0iGlynPLLJjy1rCFCxcS24IFC2j%2B/PnK5s2bR2xz587VAipCWuU0pC7YFgQGisDMRGr0fLNlfeRkoJyFMyAAAkUJRIt0SCQNkS66W7AdCIAACIAACHg%2BsAE4IAACIAACIAAC9RLoayRdb1VROgiAAAiAAAgMF4FokR6u6sJbEAABEAABEBgeAtEiHXJPeniwwFMQAAEQAAEQqJ9AtEjXXwV4AAIgAAIgAAKjSSBapBFJj%2BaBgVqBAAiAAAjUTyBapOuvAjwAARAAARAAgdEkEC3SiKRH88BArUAABEAABOonEC3S9VcBHoAACIAACIDAaBKIFmlE0qN5YKBWIAACIAAC9ROIFum6qnDGVU8TDAzKPAbqOpZRLgiAAAhkEYgW6TIj6ZC8uHF%2B4tVPYWBQyjHAxxN%2BIAACIDBoBKJFuq4KQaRxgVLmRRpEuq4zGeWCAAj4CESLdEj063OE14XkBZGGSEOk884orAcBEBh2AtEiXRcAiDREGiJd19mHckEABPpFIFqkQ6LfvEqF5AWRhkhDpPPOKKwHARAYdgLRIl0XAIg0RBoiXdfZh3JBAAT6RSBapEOi37xKheQFkYZIQ6TzziisBwEQGHYC0SJdFwCINEQaIl3X2YdyQQAE%2BkUgWqRDot%2B8SoXkBZGGSEOk884orAcBEBh2AtEiXRcAiDREGiJd19mHckEABPpFIFqkQ6LfvEqF5AWRhkhDpPPOKKwHARAYdgLRIl0XgBiR/t%2Bl/0e2SYO/6s6Hu9bxMlmP6WheHPDxhB8IgAAIDBqBaJEOiX7zKh%2BSV4xINxoNsk3El8XbXsfLZD2mEOm84xjrQQAEQKAsAtEiXZYjofkMs0hv37eXVmxbRLM2NKixLrFZGxbRin2feC8I1m%2BbnUpjptfzU5POPGLK5YuT9bssn9fOpllTk7Q%2Bx2fXhc32fcto1toGNdbOpqUB6bcf3EtLmdvaRbTioJ9VSH0RSYeegdgeBECgHwSiRTok%2Bs2rUEheoSJtRshcjm0SPf/nP//pWsfLZL1LcEKWbWehY3EyxNmen7Vtr1NkuZwVU/60Ki%2BHSMeUq4Uxy%2BdehZbzC0yrL1JyRDq0vhDpvLMT60EABOogEC3SdTjNZQ6jSOvokcVJRc2JGG/fN9mOEDtCOHdXd5S4/eAkze0l%2BpSotcdy9YXB2tk0d1fa57nSG5AjmuaFjBbaQJFOp8uOpHvhDJGu60xGuSAAAj4C0SIdEv36HOF1IXkVFWkZIPZf//0/xBGxK1LmciVSdq1fsmSJTiv59TKYTItMhqClItYNy2i91Z2rxcexzhRBez6mXF3mugZ5LxzWNcjXAyA%2BmfmpqL9AJM1cVkxZ3fwZDLmcXuoLkc47O7EeBECgDgLRIl2H01xmUZH2ia/Z5R26XehgspQAO7qjtYjtWtTuCneIF3fhZnVnS3p7GltunuBxeTrS9tSLtzN9mTuVXU%2BzDut3LSMdrfOFwIaOWGeItFlGw%2BOPZtnhDJGu60xGuSAAAj4C0SIdEv36HOF1IXkNm0ibwuOb15GmQ6RFMF0RrS/PIut85ealLyrS4j%2BLpy2SrjJ0936nW5y72pN02d3drrzsZXZ9IdJ5ZyfWgwAI1EEgWqTrcJrLjBFp8XnPnj1dg8TM6Nq1nUTcoZG0LRJZ/xMR6h71rMRw7SJayvevp2anBqC1R4Yn94uz8s9a7is3Kw0v12KX0R0uafV2nQi4SHki0moEeafrP0kXKdLSK4FIWg5zTEEABAaQQLRIh0S/efUPyWtURVpHpVZ3rgiWPRLc/l/kvrAIpznNKtfcxp7nrmg9Ut1zn9zsgpZegERsuy9GzHLsx7uSdHEibdcXkXTe2Yn1IAACdRCIFuk6nOYyR1GkdbTJ3bvW/dTUOh5lvW1SDyxTzwMbA6tChTqVt1WuKZg8bwquXCDMMnyxt%2Bf/Zje3rE/E1i/Ssr1Mk3S9i7SrvhDpus5klAsCIOAjEC3SIdGvzxFeF5LXqIl0SvysKJoFSouTp1vZjg5F2HzTvHLttO2IfrYawKWjaB7QNdU9Gl35LY9/WXXS9XHce7fLNP8n6XoT6az6QqTzzk6sBwEQqINAtEjX4TSXOUoinRIOjwibYuWaN7vEi0TTZZTr6/I285dubvE7Edv%2BRdKmP9wLYPoEka7rTEa5IAACPgLRIh0S/foc4XWSV5HpqIi0LRxFxFWEzp6m8grsto4qVwZhWcLn6uYWn/st0ik2jme6IdJ5ZyfWgwAI1EEgWqTrcJrLHAWRzhMOEbSQqe7y9oh02eWm8uuUq%2B/7Wt3cUpd%2BinTKP4dAs08Q6brOZJQLAiDgIxAt0hL1%2Bgopum7Lli1FNx16kVZd0/JKTRWB9v74lAgfT/NEul/l6iiaB8EVNc%2BFhdQxEfdi96SL1hciXfjUw4YgAAJ9JBAt0n30NVXUMEfS/J5u9Q5u/ZKO7vd0iyiFTM2I0dV93Y9yZVT6IIh0SH0h0qnTC39AAAQGhEC0SJcZSYcwGVaRNgd3hXwBSkfIvueRZSS1dW%2BYhb7ScuXDHxldya4LjSQirmbgWGh9IdIhZx%2B2BQEQ6BeBaJHul6N2OTEizRcWtsmbxFwf2DC3le16eeOYGemGCLQSWRmclfHIUipvS8hT6zLSu4Q0Va5D%2BCWNvoAIyLtKke6lvhBp%2BwzDfxAAgUEgEC3SwxhJm6Ir8yK%2BVYq02QVsPv4jYueb2sKT%2BclIh5iWXa58nYtfosKvJ5V7zq4u9qw6VSnSvdQXIj0IzRF8AAEQsAlEi7SdYb/%2BF42k5dOSdX%2BqMtX9WnAglS166h6rMdhMxFFPre89s0CWUi53Z/vKDejmFtGuSqR7rS9Eul9nLsoBARAIIRAt0oMeSYsosFhLtCzRszmVda5ImpfJeskvdKofSSoo0Cy8tkhzmRxRr9i2iGaZorl2tnrj14p93QPQyix3/a7i5ebxqUykjfvy%2BuIlhzlzhkiHNBvYFgRAoF8EokW6X47a5RSNpEUs6hZp8QPTT2kQGUCk7TMM/0EABAaBQLRID0skbQqDRMXmVNabYi7reZmsx3QwRTZ2v0CkB6E5gg8gAAI2gWiRtjPs1//QSNpsxEV8zamsh0iPpgjL/s2aQqT7deaiHBAAgRAC0SI9jJE0C7Ft0nivuvPhrnW8TNZjOpoiDpEOaTawLQiAQL8IRIt0vxy1y4mJpCG0oym0MfsVIm2fYfgPAiAwCASiRXoYI%2BmYxhxpR1PgIdKD0BzBBxAAAZtAtEjbGfbrPyLp0RTLui6CINL9OnNRDgiAQAiBaJFGJA2xrEtYyywXIh3SbGBbEACBfhGIFul%2BOWqXg0gaFwcQafuswH8QAIFRIxAt0oikIZZlimVdeSGSHrWmDfUBgdEgEC3SdWFAJI2LgzIFHSJd15mMckEABHwEokUakTTEskyxrCsviLSvmcA6EACBughEi3RdjiOSxsVBmYIOka7rTEa5IAACPgLRIo1IGmJZpljWlRdE2tdMYB0IgEBdBKJFui7HEUnj4qBMQYdI13Umo1wQAAEfgWiRrjOS5oYVBgZlHQO%2BEwXrQAAEQKAOAtEiXYfTKBMEQAAEQAAExoFAtEjXFUmPw85BHUEABEAABMabQLRIjzc%2B1B4EQAAEQAAEqiMQLdKIpKvbOcgZBEAABEBgvAlEi/R440PtQQAEQAAEQKA6AtEijUi6up2DnEEABEAABMabQLRIjzc%2B1B4EQAAEQAAEqiMQLdKIpKvbOcgZBEAABEBgvAlEi/R440PtQQAEQAAEQKA6Av8PFZ1QCPgOoaAAAAAASUVORK5CYII%3D?action=content||width="100%"}} | The T1 MRI is required since all the BDP uses the T1 space for its computation. Furthermore, this is required since it will be used to align the tensors to the FEM mesh later. |
Line 55: | Line 65: |
=== Diffusion tensor generation from DWI === Right click on the subject and then select the item "Convert DWI to DTI". |
{{attachment:mri.JPG||height="100",width="250"}} |
Line 58: | Line 67: |
Then follow the popup windows by selecting the DWI, bval and bval. If these files are in the same folder, Brainstorm will detect them automatiquely, otherwise user will be asked to browse the files one by one (as it's the case in this tutorial). | === Diffusion tensor generation (DTI) from DWI === In this step, Brainstorm calls the Brainsuite internally, and the diffusion tensors are computed. |
Line 60: | Line 70: |
In this step, Brainstorm calls the Brainsuite internally, and the the diffusion tensors are computed. At the end of this process, a new node will appeare in the Brainstom database with the name 'DTI-EIT'. This name refers to, DTI: diffusion tensors images, and EIG for eigen value, since the eigenvalues and eigenvectors are computed at voxel and stored in Brainstorm database. | Right-click on the subject and then select the item "Convert DWI to DTI". Then follow the popup windows by selecting the DWI, bval, and bval files. If these files are in the same folder, Brainstorm will detect them automatically, otherwise, the user will be asked to browse the files one by one (as it's the case in this tutorial). |
Line 62: | Line 72: |
{{/brainstorm/data%3Aimage/png%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAAWwAAACUCAYAAAC3KRN5AAAfDElEQVR4Ae2d58/cRLTG3/%2BGzxFf2Pspuh8QEFAQXRcJwgssQpEoCogiILQAoiwElNAJhBJqQCAWQkvoJRBAIBALofcSei9zdWb3jI/H41nPzuzau%2B%2Bz0pG99pQzj8c/nx2PvXPvvfee%2BuGHH9SZZ56pxv05/OzN6uFXP4NBA/SBBd4HiAX4hCswFwvsENAD2LhY4YKNPkB9AMAOhzXliAZ2SLUANk5WABt9AMAOoWY%2BbTSwEWHjBASE0QdC%2BwAi7DyIq36LBnbViigdImyc2KEnNtLPZp8BsEPImaWNBjYi7Nk8oQBKHNdx9gEAO4NwyFo0sEMqQ4QNCIwTAih7evoXgB1CzixtNLARYU/PSQKg4Vg1pQ8A2BmEQ9aigR1S2VNPPaVs27JliyLbvHmzeuKJJ7Q9%2BuijiuyRRx5RmzZt0tbtdhXZgw8%2BqB544AFt9957ryLbuHGjuvvuu7Xdcccdiuz2229XGzZs0HbrrbcqsltuuUXdfPPNpdaUzgw/ANZZ7wMAdgg5s7TRwA6JsG1Y03cAG3CadTihfcU%2BDmBnEA5ZiwZ2SGUM7Ndff1199NFH2j788ENF9sEHHxjbvn27YqMHe8jeffddbb1eT73zzjva3n77bUX21ltvGXvzzTcV2RtvvGGM6iN77bXX1KuvvqqN1snuvPNOtWrVKm04sYonFjSBJuPoAwB2CDmztNHAHiXCJliP6/Pff/8p2/755x/F9vfffysy/n7//fero446Sts4OibKBPDQB4p9AMAejYClwKZI9Oqrr1arV69OYldddZUZv54mYD%2B07UV18tJFauedd/baoqX7qflVG9X6bZ/W8p6Mh7qr1ZJFfT/n16X3gXTorFqhlizdL6fDokX7qSXLV6tO98WxtHtYu7RfVP%2BYdK%2Bt3ds2qvnB8VyyKkzbhyLyjuviYh8nADsxsK%2B88koThXI0Grvk8WoaAuEPD4ncdddd6sQTT9R27rnnKrLTTz/dbHvuuecUGaX/66%2B/tHEZtLSj6n///df4/%2BeffyrbXnrpJUV2xRVXqIMPPlibq7NSR6sCbAY6AezkbnpgunyT24aBTaYNXV%2B/boW5GHA7XctFS1cnv2D52sV%2BLVq0YizA5vJdbZXbxtLuCOg2DdisozxOALakV/X10gibImsePki1nHZgL1q%2B0RlFEtTXr1ut5geRuOyYoXBsWvqH1q0wETWByY6kH%2BoOIu9BNDgOeJVpsn5VP9ofh951t7tp0C07BlW2u44TgF0d0jKlF9gcyaZa0tQ9MrrByB%2BecnfJJZeYaLrT6SiyCy%2B8UJ133nnabrzxRkX2/PPPq%2B%2B%2B%2B04bR9UymqZ1/s4Xmt9//13Z9uKLLyqySy%2B9VO2///7aXJ1PRthlwOZ8MhoM/RnLZTRp2fS2u0CQQr8mtBvAZkJgKRXwAtseRoj9/vjjjyuy999/3wxhHH300Yrs2GOPVSeccII2Gu8mo2GZtWvXajv11FMV2T333KOHRWhoRMKZLyoMafrO/v7666/KthdeeEGRXXzxxWrp0qXaXCd70Mkrhk%2BGwd1VV9O28QWo6jBPZ3l/DH1SUfbYgD24H1BnuwFsiSmsswJeYP/xxx8qpc06sAm4ZdDK4EfjrS%2BqzvLs5t2ipSty495mmKH0Bl9xjJzLp7FVedPR3v5Qd6Oat8rt3zQsL7MquHgYwR6isH1wXZiyvPl7AK68nFaOI/O6bDvXs97VZtJ8nftmHtdZa7utMWw6bifLPqNv9rpvcleBfagmrCUt9Zi0uBFPOrluuPuO0/8e/QQzCMsABbzAtocRYr/zU4s0j5qj3z333FOR7bHHHmq33XbT9sknnygymk/9zDPPaDvllFMUGc2bprnYZOzPp59%2BqudZ01zrp59%2BWtuTTz5pnpx8%2BOGHFRk9KclPSXK5NOTC9cpOyeshETblMcC2xrszCKxQ84NIlCEjAUednGd78H7X0gYTl09p5b7c9uXlZbvgJPPSL4ZRZ8DIcqRvrDEt%2BeS2/XDl5bRVdJEXRld6168BWWdt7ZbADj1uMq9jhskomuhjJH5BVtHSd5wA7ABKi6ReYP/2228qpc06sOWJboNJ7qPOvmQwBZAuCJ1BpCcjo/4NvizqpXR8t53yS8jrk6lkWp9dL0XzfONQ1z24cafLtC4yVC5fgPT%2BEacuSh9sXagO7f/g5mYVYHOeYUMivF/qresiLWmKIt8obWK7BXT7x3s/NS9%2BEeT6gjU7R/Yj%2B15KKk24/5Ke5Av52Ne5%2BKuF65R9FjcdBYUDVr3A/uWXX1RK40iXImweaz7ooIMUGUW5u%2Byyi7aXX35ZkVFEzDcbjzvuOEVGY9hfffWVNh6uoZuQH3/8sTb5FCQ/AclPOtLc8ldeeUUbR%2BL0lGOKCDs3S8Q6gTQkBFBdUZ3u%2BBVmPWSdf/jQQaHekulvDGV5QlFenZ/AIX7%2B8olJYF2ynIYVhkfedQA7X2cRIrptJReJRrTbArbrQifbKMFcBmyZXsKfj7VPE5lX1sV5s35ZnGLp2gdgB1BaJPUC%2B%2Beff1YpjV/gRFDlOd1HHHGEItt1113VTjvtpI1e8ERGD%2B6cdtpp2vhpxPvuu8%2BMq/OwCv0K%2BOmnn7R9//33imzHjh1mNsnXX3%2BtyL788kv1%2Beefa6MhE7IQYDOsfEsdwToe4hjW4bnjD1vyz8yqkWiVerMyiyebPokHY%2B4ckbraT/4QBFzDJtIHF3h0HSXw9OV1gYD1M/scF09OQ0tzsXJE2foXyPL9TCQ%2B0XYLYJdd4HP%2Bi3aWATtGE5O35KIfepwAbEHhgFUvsH/88UclbcnhG1SIyby0viCAPQCXhAKt%2Bzq0nVZ%2B10Mh3Y2qQ/O8rZtO8gGdsvLLtufqKIGlTMPrdLPqZBpTdUTdBDTXBSvGB1/eMoiQZvywkysa5LbQ0pQhgCf38/rE2y2A7WuD8V%2BA1AXsWE18FzbWqGzp8hHADqC0SOoFNkervAyBNaXlfLyk93aQ0QubeEiEX%2B50ww03qEMPPVQbT%2BW7/PLL9XxsmpO9bNkybdddd53OT2XwcM1nn31mXv4kX6nKr1LlYZV169ap66%2B/XhvPCacnKlMMifRndmQzP%2ByTzAceu6P3h1eyssoiuzqAXfQ1P3uhD%2B38E49V2p5F%2BdWGesgPFwhouwSWSzvXNtdwkN1W%2BX39ujG3WwC77FeJbqvjYivbz/1QbnO137WNNZGwH2W6qus4AdiCwgGrXmDTsEJKm2Vg88mcdc7q4OG8tORIRp5A2Xhx/8Yj7RtlSKTsxC%2BDpfRr2Dqd1NJ3WdcsApv1GFu7GwpsvgBw%2B6sss3MiG3IDsAMoLZJ6gf3tt9%2BqlEbjz2T06lOefULvECGjB2X4NadnnHGGIjv77LPV%2Beefr%2B2www5TZLT92muv1cbj1jQ2TQ/jkD377LPaaNoev86Vo2n6gwSeC85/lnDOOeckibC540o4yc4tt0uYcT5acscmIJe9UKkMrmXll22X9brKlBGZbIfMZ6%2BX5RnVByrfl5f14kiQ/Snzg/f7lqPkLcvj8519cGlP%2B2SZZf1Fpxshwq56PI2PYogJEbagZw2rXmB/8803KqXRP8OQ0XuoeXyb51fT8AfDu91uK7IVK1aolStXapufn1dkBG0eOvnhhx8UGflIwyJkPIebZo3wO7cZ5vSObR6CYXA3BdhVf3ZmkKoWwY8Kjar%2B8Endh4x77HhUH3SZYnaNDa5Miyxys/0IBUxj2i0ibB9gXRpI2HPeUdoljy3/eirT01e%2By0dE2KPR3gtsnj6XarkggD2IeHSULB5aGAYt10kmT5gCiKy3ApaVX7Zdll0W5WUnWv7iIPPK9bK6yrbLvAYIFdtFeTP/8sCmfVl5xX2yXtd6Vm6N7RbALoNkrp1ilktZX0qjiVvPsjrJx0zPLC%2BAPQZg01BDSqOnFMm2bt1qIvdjjjlGkdFLmPg/Gi%2B77DJFdvzxx6t99tlHG62THXLIIWrJkiXaeLoezbfmaXr0X45kt912m/nvxptuukmR0c1HurlJ9thjj2mjYZcUNx35xM9OivzJPgxavgiFy2awTmoMW56E/Qdusgd52Cdekv9Z27MTk/bnyhFgyfJm736uOjZPeV0gMGWKyLwMeGWa5/zVDxrV0G4JbOsiZtooggP560P6zxE25ZF9MFgToacsk33xHQvXPgB7DMD%2B4osvVEqbZWDrWSJy2p0FJnmyyJOLOzwtGXj96Dx7IKUPw%2BKsEVlOWfll22W9fCGwYUlpeB9fJPQ7I8T7vsk3%2BdAQpZN%2BcT1lbbPz2j74/Gff7DzOOvWfLGTg7b9LY/CyKgcQueza2i2AbXxI8KRj7jgEasJ5SW/54I186tIFc9ZSHicAewzA5odMUi35H83pKUYef6Y/ECCjCPuiiy7SdtJJJymyww8/XO29997ajjzySEVGb/XjcW%2BO/mlcmp9m5BuN/E/sdMORbzDyuDUt%2BZ/ZQyJsOnGqmOtBBx94GDAyMnLVQ1Huyeuyf5aRJ0dZ%2BWXbuU5auk4ouV%2BekC6/eJt9Issy9EunBo%2BCc3pe6puGjptn2jcR2dkXAtk2LiunyeCBH97nWvZ9zkAufa613QLY86uyY263wTnvXeSVemg9IzSRv0hsP%2Bi7q9/bx5Dz/c//3TEasRZ4Lu8YNt/IS7XkOdLbtm0zc6j5cXUaAuGnGWnYg%2ByAAw5Qe%2B21lzZ%2BhJ1uQtJwBxlfSOhGI/9zDf9Z77DlI488osjOOuusykMi3NlcSzrxl1R4AxzltcEjIcHRtHyqUP79mDxp5M9aCS9Zftn2XJ0lsMylMZF08ck/%2Btsw19vaZH5a5zfOcdu0ZoOXSpVdNIb5b0PVBhTV65rXTpouobrFrwXbX%2B1zXe0W0KXjydpx39MXmpK/pJMXfpcesZpozcWDU7p/iujfpaN9nADs0a48pcCmd1HTW/BS2jQC29X5sK34p6rQpDmaVAF23ccLQyKJgT2OP%2BHlf5ehFy9xRExT7cjoyUWa7kfG/wZD/%2BHIL2lyLeXwBw97yCUPgXA0TUt%2BYyBH9vSv776bjnV3bNTfHBBOy7GQwJa/tprkP4CdGNijFefPBWADPk2Cxqz6Qq%2BOpaETGjaRry9oUnsBbD8ry/aWDomUZbC3U4Ra9XPLLbcosvXr15vXpl5zzTWKbM2aNXoqH41l0385kl1wwQXmPx35vx3lkp%2BMpPeB0AMwZUbj1LaR32T0pkBE2LiQNAlmo/gio2ozzj3khVaj1JMqD4BdlZr5dNHAzhfn/8YvYyJ48tOKBx54oCLbd999zX8r0r/PkO2%2B%2B%2B4GpgzVcS5TdUaUgwvApPsA3ZydF7Nw6NUGrlfdTtqvsvoAbD8ry/ZGAzskwgawAbKyExjbF1bfALDLkOzfHg1sf/H5vXSQcGIurBMTxxvH29UHAOw8G6t%2BiwZ2SIQNYOPkdZ282Lbw%2BgWAXRXR%2BXTRwM4X5/8GYC%2B8ExMwxjF39QEA28/Ksr3RwEaEjRPSdUJiG/qFrw8A2GVI9m%2BPBra/%2BPxeRNg4iX0nMfYtnP4BYOfZWPVbNLARYS%2BckwxAxbFO1QcA7KqIzqeLBna%2BOP83RNg44VOd8ChnuvsSgO1nZdneaGAjwp7uEwfgw/Grow8A2GVI9m%2BPBra/%2BPxeRNiAQx1wQJ3N63cAdp6NVb9FAzs0wqYDBYMG6APoA1UhhXSZAtHAzorCGhSAAlAACoxTgWhgh0TYwxqSsqxhdWE/FIACUGDaFIgG9rQ1GP5CASgABaZVgWhgp4yKU5Y1rQcEfkMBKAAFyhSIBnZZwdgOBaAAFIACaRWIBnbKqDhlWWllQmlQAApAgfoViAZ2/U2AB1AACkCBhaFANLBTRsUpy1oYhw%2BthAJQYCEpEA3shSQW2goFoAAUqFOBaGCnjIpTllWnqKgbCkABKDAOBaKBPQ6nUCYUgAJQAAoUFYgGdsqoOGVZxaZiCxSAAlBguhWIBvY0Nn/lypXKNm7H5s2bC/toGz5QAApAgboViAZ2yqg4ZVk%2BYefm5pRtnJ5Abu%2BjbfhAASgABepWIBrYdTdglPptINN3/kwE2Dt6qru1rVob5tTc2sxaG9qqu4M9cS97W1u5PDK/Wd/UdWeOqJcK7G23fF7TUq1NXdUb4rPTmR0d1Vozp%2BbWtFQnKH9PdUi3NW1V0sqsusj2ZgVhDQo0Q4FoYKeMilOWZcsrQUz12MYQX7x4cWEfbeP9drnB3wl6BCoBanu9tbVXWmx3kz%2BvLssF7Kh6B5As83lU6FJ5gXnNBWsYsKPaWyo/dkCBWhWIBnat3gdU3ghgc1RJoNLRtADzjm4/chxAsb3d1biuao8SlUbWay4Sa1qqvT3vc5t/JQwDqGiOgW4gsPP5PBF2ZHuFq1iFAo1SIBrYKaPilGWxygRqsmXLlimKlF0RNNXLEbRrv8zL5Y1yI9IApxRuIpLd0FECjf3mMIhc%2B7jBjmVUvVzn2jnlvYisnVO%2BXwbGLVGe/jVQKcLuqe4mayioVEOlotprHMUKFGieAtHAbl6T8h75QCyHRULTEbjDPgLGriELLmx7uz9c4gIZ7/Pl53LMMq7e4fBTykTgQ/3KfGlv8rTT%2BE7j5h1loni6KGwYgLsU2Fkdcz5/WEuXzqJ%2BrEKBJikQDeyUUXHKsljkUBC7ImwX2MOBzR4NWXIE6gAJw9Md6Q4pd9huT73DslYFNvuvQVoJmIMhoMHQiR6OMfk8QyLDHKb9Ee2tUjzSQIFxKBAN7HE4lbJMF7C5/C1bthRuMEo4u9JxeWMDtgFScfaEBuOaturQePemVu7mZX%2BGSWEQhZswfOmp15uZwVc6ZDLIzek4Mq5UXx/YeiYKO2HyRQLblFPUmavCEgo0TYFoYKeMilOWxUIzYGXkzPuaCGwTrTLY2Fklos3BjUl7dgl9rzSObMrMVsrrzdLYazRcYWa8eMfVs2EK8%2BugIjALUwZNvjhgj9Jeu/34DgUmrUA0sCftcGh9UwVsjkIJyPb4q9xHszW2drObkjTfWNyUC4a2LNuutyB4Bl%2B%2BYLSkL4X04iagLNuANzDCNfkigB3UXkeDsAkK1KRANLBTRsUpy2I9pwfYAoSF6FopxaDyDD2MFjUOqZeFNEuK9Fv65p%2BJrimy3%2BSY1UJ5GI52m7g9jrF6U5VrxeQbFdih7XU5gW1QoB4FooFdj9vVa50OYAuIeIA8vNXZsEm1KDu%2BXv%2BwSFa%2BGQrhRhjwTjLCzvyhXwcFn9g3LKFAQxWIBnbKqJjLqrqsomnzgZ2HSDXQlrVclCWHH5zJRdqIsW9dNMPXgmBuVojtA%2BeZWISdsL12W/AdCkxIgWhgT8jPkatpNrDTQ8QMi3iBnbpeUR7XWzYUwkdyosAW/sVenNh/LKFADQpEA5uj4RS%2BpyyL/WkusLu5B0Jyj3yz8yMshwN7MvWa6Nozo4VvWpolw97XbgP6qmPY42mvz0XsgwLjUiAa2ONyLFW5jQT2jmysmV5%2BlG4sNYsknUMrE6iXZ7c0Athja2%2Bq3olyoECYAtHAThkVpyyLZWgesPOwrvpqURM5%2B%2BY78zCENZbc12KM9Yo54s4LBR8MuTSR8rhuOo7WXuki1qFA0xSIBnbTGmT74wI2XRhsC0032pOOWQQc%2BlpRM62v9CadKLsAdbGvNL%2Bt3OA7g9V5EeinMReTkLK53JA8VJ3J5xsSiWhviQzYDAWaoEA0sFNGxSnLYnFDQSyfiLShTt%2B5vFGALYcJwodB8hDKjXnTT39%2BzakDrKnrNQ/A7%2BjpR%2BR5DLpydE0Hx4A3fYQd117uOVhCgeYpEA3s5jUp7xGBlUy%2BItUHYhewZV4uL/z1quInesUbcQUAWmBmUJql/b5qLUWCemnIQ1wQTH2iHQVf84eh%2BG1swE7R3qK72AIFmqBANLBTRsUpy7LFJdBydBwKbII457XLrfxdjC%2B7gOfa5oag4%2B/F9F91ddx/L5awXvdfhJXUO0yYcQE7WXuHNQD7ocDkFYgG9uRdHq3G2oE9mtvIBQWgABQwCkQDO2VUnLIs00LHCkfLcsnJJNh5P23DBwpAAShQtwLRwK67AaPUzyCWSy4HwGYlsIQCUKBpCkQDO2VUnLIsn9AEZds4Pd1MtPeF32Dk0rCEAlAACqRTIBrY6VxBSVAACkABKOBTIBrYKaPilGX5Go19UAAKQIFpVCAa2NPYaPgMBaAAFJhGBaKBnTIqTlnWNB4M%2BAwFoAAU8CkQDWxf4dgHBaAAFIAC6RSIBnbKqDhlWekkQklQAApAgWYoEA3sZjQDXkABKAAFZl%2BBaGCnjIpTljX7hw4thAJQYKEpEA3shSYY2gsFoAAUqEuBaGCnjIpTllWXoKgXCkABKDAuBaKBPS7HUC4UgAJQAArkFYgGdsqoOGVZ%2BWbiGxSAAlBg%2BhWIBvb0S4AWQAEoAAWmQ4FoYKeMilOWNR3yw0soAAWgQHUFooFdvSqkhAJQAApAgRgFooGdMipOWVaMKMgLBaAAFGiiAtHAbmKj4BMUgAJQYBYViAZ2yqg4ZVmzeLDQJigABRa2AtHAXtjyofVQAApAgckpEA3slFFxyrImJyFqggJQAApMRoFoYE/GTdQCBaAAFIAC0cBOGRWnLAuHFgpAASgwawpEA3vWBEF7oAAUgAJNVSAa2Cmj4pRlNVVw%2BAUFoAAUGFWBaGCPWnGd%2BVauXKlsY382b95c2Efb8IECUAAK1K1ANLBTRsUpy/IJOzc3p2zj9ARyex9twwcKQAEoULcC0cCuuwGj1G8Dmb7zZ9zA7raLF4uiPy3VarVVp9tTPXbMWlYrx11XqyNK7bYHF6iWkput6jxfe6rTctdTbJdM56gv2Jee6nY6qt1qqZZ1ESb92p1uqX6eBmEXFGisAtHAThkVpyzLVlyCmOqxjeGyePHiwj7axvvtckO/B4OWwC34yvUFlyOANgvA7nXaBUjzMcovW6rtEpCFxBIKTJEC0cCelrY2Dtjtbrl0vZ7qdSWQHNFoWe7QKDU0faFeEWH72lTI59hQyRdRH12EnL9EBvqJyD93kXJUjU1QYBoUiAZ2yqg4ZVksPoGabNmyZYoiZVcETfVyVObaL/NyeaPeiDSRcSW4dVXbRMZt5UE8N1epStDLkgenF1n7qwKgldpUKCDbUMF3o9/cnGp3HT89stKUUj2VpQ%2B46OXKwBco0BwFooHdnKa4PfGBWA6LhKYjcI/yMQCpCrdex/z0rxQlVoBezu/Q9LnM9GWCwA7VQvsqLnpVNS%2B0ERugQDMUiAZ2yqg4ZVksbyiIXRG2C%2BwTA7aioHlws67VGX4TLRTAoelZWLOcHLCDdDD%2BKdXrtPq/oKroJ/JhFQo0TYFoYDetQbY/LmBzmi1bthRuMEo4u9JxeZMEdtCwRSiAQ9OzKGY5KWBnkXKlXxrGP1opn22TS4YvUKDhCkQDO2VUnLIs1p0BKyNn3jc1wBZDAUN/1YcCODQ9i2eWEwJ2tJ/GYaxAgalVIBrYTW/5TABbBUSXoWALTV844JMBthnWmKt487XgJzZAgelXIBrYKaPilGXxoQGwWYmSZUpgmxkt8gEZ97rzl4LHFwNsjEOXHEhsXggKRAO76SIB2EOOkAeSQ3IOdosIu3ZgD/fFeaGo1lCkggK1KxAN7JRRMZdVdVlFPQB7iEopgR1LQ48vJsL2DokA2EOONnZPuQLRwG56%2B2cC2HXcdBR1sobZUj6EIiA5RmAHzZSxO6VoS6yLdtH4DgUmqUA0sDkanqTTIXUxZKZ6logn8ixoEZKWMpelF5BjDbNlDcAWN16DoSvaEpy3IDA2QIH6FIgGdn2uV6uZITPNwA56YKQMwGVyhaYvlDOhCDv0ASLpJ4At1cD6FCsQDWxE2GFH38C3aqgXCptQAIemLzR3csBWQough2dEvqqyF5qJDVCgAQpEA7sBbfC64Iqw6SJjW2i6yTzpmM2/nqs6nS0UwKHpC2pPENgyyp6bU5Wg3euqtnhrH4BdOIDYMEUKRAN7GiNsG9b0vUnA7vXoxfx4var7PKI38A3eDaJfr9rSb%2B3r5V7cR69X7f%2BxAR9XWrba%2BEMDt6bYOi0KRAO76Q2lSJhMviI1FNgyL5cX/XrVqnOWW2019C2i8iCERsyh6WVdel1E2FXbNEhXiJADfMm/L9z9cI6B9eCd2QXXsQEKTJkC0cBueoTNx4NAyydwKLDphiXn5fJGXZoxbB/c6C%2Bv2h39F2HB9QRAT5cdmr7gUD3AZjd0JN12/UUY/dNMJ%2Bxix4ViCQUaqkA0sBvaroJbTQF2wTFsgAJQAApUVCAa2NMSYUs9OFqWS94vwc77aRs%2BUAAKQIG6FYgGdt0NGKV%2BBrFccjkANiuBJRSAAk1TIBrY0xhhE5Rt4wNDNxPtfaPeYOQysYQCUAAKpFAgGtgpnEAZUAAKQAEoMFyBaGBPY4Q9XBakgAJQAAo0T4FoYDevSfAICkABKDCbCkQDGxH2bHYMtAoKQIHmKRAN7OY1CR5BASgABWZTgWhgI8KezY6BVkEBKNA8BaKB3bwmwSMoAAWgwGwqEA1sRNiz2THQKigABZqnQDSwm9ckeAQFoAAUmE0FooGNCHs2OwZaBQWgQPMUiAZ285oEj6AAFIACs6lANLARYc9mx0CroAAUaJ4C/w9XVJXtbq6wHAAAAABJRU5ErkJggg%3D%3D?action=content||width="100%"}} | {{attachment:dwi2dti.jpg||height="300",width="550"}} |
Line 64: | Line 74: |
You have already generated the FEM mesh as explained here (link to the FEM mesh tutorial) | At the end of this process, a new node will appear in the Brainstorm database with the name 'DTI-EIT'. This name refers to, DTI: diffusion tensors images, and EIG for eigenvalue, since the eigenvalues and eigenvectors are computed at voxel and stored in Brainstorm database. {{attachment:mriAndDTI-EIG.JPG||height="100",width="230"}} If you check the structure of the file DTI-EIG, by right click -> File and then 'Display file contents', the following figure is displayed. {{attachment:EIG-hardDisc.JPG||height="200",width="450"}} The size of the matrix is 128x256x256x12, where the first 3 values are the same as the size of the T1 MRI and 12 corresponds to the 3 eigenvectors components (9) and eigenvalues (3) === Conductivity tensor generation from DTI === The Effective Medium Approach is applied to convert the diffusion tensors to the conductivity tensors. ==== FEM mesh head model ==== This step requires the FEM mesh of the head model. You can generate the FEM head model from the MRI data as explained on [[https://neuroimage.usc.edu/brainstorm/Tutorials/FemMesh|this page]]. For the following, we used the SimNibs FEM mesh generation. The following figure shows the FEM mesh obtained with the SimNibs method using the T1 MRI. {{attachment:Mri&femMeshView.JPG|Mri&femMeshView.JPG|height="300",width="260"}} {{attachment:femMeshView.JPG||height="300",width="280"}} Note that this mesh is obtained only from the T1, the use of the T2 is highly recommended if it's available, as recommended in the [[https://neuroimage.usc.edu/brainstorm/Tutorials/FemMesh|FEM mesh tutorial]]. ==== Computation of FEM mesh tensors ==== Once the FEM mesh and the DTI tensors are available in the Brainstorm database, the next step for the FEM tensors can be performed by the following: - Right-click on the FEM mesh - Compute FEM tensors {{attachment:menuGenerateFemTensors.png||height="280",width="250"}} Brainstorm checks the available tissues in the FEM head model and displays the following panel {{attachment:FEMConductivitiesIsoPanel.JPG||height="220",width="250"}} This panel lists the tissues available in the FEM head model and assigns a default value of the conductivity for each compartment. Users can change these values to their own if needed. DTI values can be used to generate conductivity tensors for the white matter (and in some cases for the grey matter). Please, note that the DWI can be used only for the brain tissues and not for the outers compartments (skull and skin) In this tutorial (and in most cases) we select the white matter. Select the anisotropy button for the white matter and then these additional options appear asking for the method to use. {{attachment:FEMConductivitiesAnisoPanel.JPG||height="300",width="250"}} The available methods are: - Effective Medium approach (EMA) - Effective Medium approach with volume constraints (EMA + VC) - Simulated or the artificial anisotropy Only the two first methods require the DTI. More information about these methods can be found on these references [ref1][ref2] and in our main paper [link] In this tutorial, we use the method "EMA + VC", where the final tensors are constrained to fits the volume of the equivalent isotropic tensor volume. ==== Visulation of FEM mesh tensors ==== Once the FEM tensors are successfully computed, they are stored in the FEM head node. By right-clicking on the FEM head, new menu items are added that gives the possibilities to display the FEM tensors either as ellipsoids or as vectors in the direction of the main eigenvector. {{attachment:menuDisplayTensors.jpg||height="300",width="250"}} The tensors can be displayed either on the FEM mesh or overlaid on the MRI. The following figures show an example of the obtained tensors displayed on the white matter. {{attachment:meshViewTensorsLines.JPG||height="300",width="350"}} {{attachment:meshViewTensorsTensorsTops.JPG||height="300",width="350"}} On the left, the tensors as a line on the direction of the main eigenvector. On the right, the tensors displayed as ellipsoids. The orientation of the tensor is color-coded as follows: red for right-left, green for anterior-posterior, and blue for superior-inferior. Note that the quality of the tensors depends on the DWI data and the number of acquisition direction. Users can also display the tensors on specific tissues, for example on the white matter (left figure) or overlay on the MRI (right figure). {{attachment:meshViewTensorsLinesWM2.JPG||height="300",width="350"}} {{attachment:tensorsOnMri.JPG||height="300",width="300"}} ==== FEM mesh tensors ==== In the case where the user wants to use generate isotropic tensors, then the DTI is not required. In the case where more than one FEM head model is in the database, the highlighted one in the green color will be used. |
Line 68: | Line 151: |
When this is done, then right-click on the subject > Convert DWI to DTI, | When this is done, then right-click on the subject -> 'Convert DWI to DTI', |
Line 70: | Line 153: |
Brainstorm will load the avialbale tissue in the FEM head model and the following windows appears. | Brainstorm will load the available tissue in the FEM head model and the following windows appear. |
Line 72: | Line 155: |
Select the WM anisotropy and kee all the oher tissues as isotropic. | Select the WM anisotropy and kee all the other tissues as isotropic. |
Line 74: | Line 157: |
The process of conversion from DWI to Conductivity tensors use the EMA, furthermore, brainstorm propose the option to use the adaptative EMA with the volume constraint option [ref]. In this example we select the EMA with the VC. | The process of conversion from DWI to Conductivity tensors uses the EMA, furthermore, brainstorm proposes the option to use the adaptative EMA with the volume constraint option [ref]. In this example, we select the EMA with the VC. |
Line 76: | Line 159: |
The process will take around 10 min, and then the FEM tensors are computed and stored in the FEM strucutre. [explain how it is organised and how to use it outside brainstorm ] | The process will take around 10 min, and then the FEM tensors are computed and stored in the FEM structure. [explain how it is organized and how to use it outside brainstorm ] |
Line 78: | Line 161: |
=== Display the tensors === | Brainstorm will load the available tissue in the FEM head model and the following windows appear. Select the WM anisotropy and kee all the other tissues as isotropic. The process of conversion from DWI to Conductivity tensors uses the EMA, furthermore, brainstorm proposes the option to use the adaptative EMA with the volume constraint option [ref]. In this example, we select the EMA with the VC. The process will take around 10 min, and then the FEM tensors are computed and stored in the FEM structure. [explain how it is organized and how to use it outside brainstorm ] |
Line 80: | Line 170: |
In the case where the DWI is not available, or the users desire to evaluates the effect of the conductivity change on the model, the artificial conductivity can be use. | In the case where the DWI is not available, or the users desire to evaluate the effect of the conductivity change on the model, the artificial conductivity can be used. |
FEM tensors estimation with BrainSuite
Authors: Takfarinas Medani, Francois Tadel, Anand Joshi and Richard Leahy
[TUTORIAL UNDER WRITING: NOT READY FOR PUBLIC USE]
Describe brainsuite here: here we will describe the process of the brain tissues anisotropy estimation and the different functions that brainstorm offers.
This tutorial explains how to use Brainsuite to estimate the anisotropy of the brain tissues.
refer to this page
https://neuroimage.usc.edu/brainstorm/Tutorials/SegBrainSuite?highlight=%28anand%29
The realistic tensors are estimated from the Diffusion-Weighted Images (DWI). For this purpose, Brainstorm calls internally the BrainSuite Diffusion Pipeline to compute the diffusion tensors on each brain voxel. Afterward, the Effective Medium Approach is applied to convert the diffusion tensors to the conductivity tensors. The following section shows the users how to do it from the graphical interface.
Only the NIfTI is supported. All the diffusion data, including the DWI file and direction and the value of the gradient files, respectively the *.nii, the *.bval and the *.bvec are required. Ideally, these files should have the same name and saved in the same folder.
Contents
Requirement
- You have already followed all the introduction tutorials
- You have a working copy of Brainstorm installed on your computer
Brainsuite Installation
Download the latest version of BrainSuite from http://www.brainsuite.org/download.
Install it on your computer by following the instructions in BrainSuite's quick start installation guide.
Note that you will be using BrainSuite Diffusion Pipeline(BDP), so you need to install a compatible MATLAB Compiler Runtime(last version).
Start BrainSuite to check if the installation (It's not required to open BrainSuite to run this tutorial).
The BrainSuite installation folder should be informed in the Brainstorm preferences
Dataset
In this tutorial, we use the Brainsuite dataset example available on the BrainSuite tutorial webpage. User can also download directly these data from these links: MRI T1w MRI DWI
The first file contains the T1 MRI data, with the name '2523412.nii.gz'. as in this figure,
The second file is the DWI and should contain at least three files
Where the *.bval is a text file that contains the value of the gradient, and the *.bvec is also a text file that contains the orientation of the gradient. The nii.gz file is the NifTi file of the DWI where the images are stored.
Realistic condctivity tensors
Load the T1 MRI data to brainstorm
First, you need to create a new subject in your protocol, let call it the 'BrainSuiteSubject'. Then import the T1 MRI of the subject and set the fiducials points as explained in the previous tutorial.
The T1 MRI is required since all the BDP uses the T1 space for its computation. Furthermore, this is required since it will be used to align the tensors to the FEM mesh later.
Diffusion tensor generation (DTI) from DWI
In this step, Brainstorm calls the Brainsuite internally, and the diffusion tensors are computed.
Right-click on the subject and then select the item "Convert DWI to DTI". Then follow the popup windows by selecting the DWI, bval, and bval files. If these files are in the same folder, Brainstorm will detect them automatically, otherwise, the user will be asked to browse the files one by one (as it's the case in this tutorial).
At the end of this process, a new node will appear in the Brainstorm database with the name 'DTI-EIT'. This name refers to, DTI: diffusion tensors images, and EIG for eigenvalue, since the eigenvalues and eigenvectors are computed at voxel and stored in Brainstorm database.
If you check the structure of the file DTI-EIG, by right click -> File and then 'Display file contents', the following figure is displayed.
The size of the matrix is 128x256x256x12, where the first 3 values are the same as the size of the T1 MRI and 12 corresponds to the 3 eigenvectors components (9) and eigenvalues (3)
Conductivity tensor generation from DTI
The Effective Medium Approach is applied to convert the diffusion tensors to the conductivity tensors.
FEM mesh head model
This step requires the FEM mesh of the head model. You can generate the FEM head model from the MRI data as explained on this page.
For the following, we used the SimNibs FEM mesh generation. The following figure shows the FEM mesh obtained with the SimNibs method using the T1 MRI.
Note that this mesh is obtained only from the T1, the use of the T2 is highly recommended if it's available, as recommended in the FEM mesh tutorial.
Computation of FEM mesh tensors
Once the FEM mesh and the DTI tensors are available in the Brainstorm database, the next step for the FEM tensors can be performed by the following:
- Right-click on the FEM mesh - Compute FEM tensors
Brainstorm checks the available tissues in the FEM head model and displays the following panel
This panel lists the tissues available in the FEM head model and assigns a default value of the conductivity for each compartment. Users can change these values to their own if needed.
DTI values can be used to generate conductivity tensors for the white matter (and in some cases for the grey matter). Please, note that the DWI can be used only for the brain tissues and not for the outers compartments (skull and skin)
In this tutorial (and in most cases) we select the white matter. Select the anisotropy button for the white matter and then these additional options appear asking for the method to use.
The available methods are:
- Effective Medium approach (EMA)
- Effective Medium approach with volume constraints (EMA + VC)
- Simulated or the artificial anisotropy
Only the two first methods require the DTI. More information about these methods can be found on these references [ref1][ref2] and in our main paper [link]
In this tutorial, we use the method "EMA + VC", where the final tensors are constrained to fits the volume of the equivalent isotropic tensor volume.
Visulation of FEM mesh tensors
Once the FEM tensors are successfully computed, they are stored in the FEM head node. By right-clicking on the FEM head, new menu items are added that gives the possibilities to display the FEM tensors either as ellipsoids or as vectors in the direction of the main eigenvector.
The tensors can be displayed either on the FEM mesh or overlaid on the MRI. The following figures show an example of the obtained tensors displayed on the white matter.
On the left, the tensors as a line on the direction of the main eigenvector. On the right, the tensors displayed as ellipsoids. The orientation of the tensor is color-coded as follows: red for right-left, green for anterior-posterior, and blue for superior-inferior.
Note that the quality of the tensors depends on the DWI data and the number of acquisition direction.
Users can also display the tensors on specific tissues, for example on the white matter (left figure) or overlay on the MRI (right figure).
FEM mesh tensors
In the case where the user wants to use generate isotropic tensors, then the DTI is not required.
In the case where more than one FEM head model is in the database, the highlighted one in the green color will be used.
The FEM head model to use for tensors should be selected and highlighted with the green color (double click on the FEM mesh node to select it)
When this is done, then right-click on the subject -> 'Convert DWI to DTI',
Brainstorm will load the available tissue in the FEM head model and the following windows appear.
Select the WM anisotropy and kee all the other tissues as isotropic.
The process of conversion from DWI to Conductivity tensors uses the EMA, furthermore, brainstorm proposes the option to use the adaptative EMA with the volume constraint option [ref]. In this example, we select the EMA with the VC.
The process will take around 10 min, and then the FEM tensors are computed and stored in the FEM structure. [explain how it is organized and how to use it outside brainstorm ]
Brainstorm will load the available tissue in the FEM head model and the following windows appear.
Select the WM anisotropy and kee all the other tissues as isotropic.
The process of conversion from DWI to Conductivity tensors uses the EMA, furthermore, brainstorm proposes the option to use the adaptative EMA with the volume constraint option [ref]. In this example, we select the EMA with the VC.
The process will take around 10 min, and then the FEM tensors are computed and stored in the FEM structure. [explain how it is organized and how to use it outside brainstorm ]
Artificial/simulated conductivity tensors
In the case where the DWI is not available, or the users desire to evaluate the effect of the conductivity change on the model, the artificial conductivity can be used.
Two approaches are integrated within Brainstorm. Either the