2079
Comment:
|
3647
|
Deletions are marked like this. | Additions are marked like this. |
Line 6: | Line 6: |
<<TableOfContents(2,2)>> | <<TableOfContents(3,2)>> |
Line 14: | Line 14: |
To start building your analysis pipeline, just click on the "'''Run'''" button in the Process1 tab. Then add all the processes listed below. | To start building your analysis pipeline, just click on the "'''Run'''" button in the Process1 tab. Then add all the processes listed below. The output of each process is the input of the following one, this is why they cannot necessarily be shuffled. |
Line 16: | Line 16: |
==== Import anatomy > Import FreeSurfer folder ==== | === Import anatomy > Import FreeSurfer folder === |
Line 25: | Line 25: |
==== Import recordings > Create link to raw file ==== | === Import recordings > Create link to raw file === |
Line 30: | Line 30: |
==== Pre-process > Sinusoid removal (notch) ==== Input: Raw file ; Output: Raw file |
=== Pre-process > Sinusoid removal (notch) === Input: Raw file ; Output: Raw file (new) |
Line 35: | Line 35: |
==== Artifacts > Detect eye blinks ==== | === Artifacts > Detect eye blinks === |
Line 40: | Line 40: |
==== Artifacts > Compute SSP: eye blinks ==== | === Artifacts > Compute SSP: eye blinks === |
Line 45: | Line 45: |
=== Import recordings > Import MEG/EEG : Events === Input: Raw file ; Output: 199 epochs in 2 conditions {{attachment:procImportEvt.gif|procImportFs.gif}} === Pre-process > Remove DC offset === Input: 199 epochs ; Output: 199 epochs {{attachment:procBaseline.gif|procImportFs.gif}} === Sources > Compute noise covariance === Since the epochs are currently selected and pre-processed: we can use them to estimate the noise covariance matrix before we move on with the calculation of the average. Input: 199 epochs ; Output: 199 epochs {{attachment:procNoiseCov.gif|procImportFs.gif}} === Average > Average files === Input: 199 epochs ; Output: 2 averages {{attachment:procAverage.gif|procImportFs.gif}} === File > Save snapshot: Sensors/MRI registration === Input: 2 averages ; Output: 2 averages {{attachment:procSnapReg.gif|procImportFs.gif}} === File > Save snapshot: Recordings time series === Input: 2 averages ; Output: 2 averages {{attachment:procSnapTs.gif|procImportFs.gif}} === Sources > Compute head model === Input: 2 averages ; Output: 2 averages {{attachment:procHeadmodel.gif|procImportFs.gif}} === Sources > Compute sources === Input: 2 averages ; Output: all the source files (1 raw + 2 average + 199 epochs = 202 files) {{attachment:procSources.gif|procImportFs.gif}} == Save the pipeline == === Save in current workspace === === Export as script === == Process report == |
Full analysis with one script
This tutorial explains how to use the Brainstorm scripting interface to run a full analysis, from the raw recordings to the source reconstruction. It is based on a median nerve stimulation experiment recorded at the Montreal Neurological Institute in 2011 with a CTF MEG 275 system. The sample dataset contains 6 minutes of recordings at 1200Hz for one subject and includes 100 stimulations of each arm.
The tutorial follows the analysis steps detailed in the three advanced tutorials in the category Processing continuous recordings. You should read them before reading this tutorial, to have the explanations that go with the analysis steps.
Contents
-
Creating the analysis pipeline
- Import anatomy > Import FreeSurfer folder
- Import recordings > Create link to raw file
- Pre-process > Sinusoid removal (notch)
- Artifacts > Detect eye blinks
- Artifacts > Compute SSP: eye blinks
- Import recordings > Import MEG/EEG : Events
- Pre-process > Remove DC offset
- Sources > Compute noise covariance
- Average > Average files
- File > Save snapshot: Sensors/MRI registration
- File > Save snapshot: Recordings time series
- Sources > Compute head model
- Sources > Compute sources
- Save the pipeline
- Process report
Creating the analysis pipeline
Select the menu File > Create new protocol. Name it "TutorialScript" and select the options:
"No, use individual anatomy",
"Yes, use one channel file per subject".
To start building your analysis pipeline, just click on the "Run" button in the Process1 tab. Then add all the processes listed below. The output of each process is the input of the following one, this is why they cannot necessarily be shuffled.
Import anatomy > Import FreeSurfer folder
- Subject name: Subject01
- Folder to import: Select the folder sample_raw/Anatomy
- Number of vertices (cortex): 15000
- Fiducials: Copy what is indicated below. This is a reason it is usually easier to do this step in interactive mode, and then run only the script starting from the next step.
- Input: None; Output: None
Import recordings > Create link to raw file
Input: None; Output: Raw file
Pre-process > Sinusoid removal (notch)
Input: Raw file ; Output: Raw file (new)
Artifacts > Detect eye blinks
Input: Raw file ; Output: Raw file
Artifacts > Compute SSP: eye blinks
Input: Raw file ; Output: Raw file
Import recordings > Import MEG/EEG : Events
Input: Raw file ; Output: 199 epochs in 2 conditions
Pre-process > Remove DC offset
Input: 199 epochs ; Output: 199 epochs
Sources > Compute noise covariance
Since the epochs are currently selected and pre-processed: we can use them to estimate the noise covariance matrix before we move on with the calculation of the average.
Input: 199 epochs ; Output: 199 epochs
Average > Average files
Input: 199 epochs ; Output: 2 averages
File > Save snapshot: Sensors/MRI registration
Input: 2 averages ; Output: 2 averages
File > Save snapshot: Recordings time series
Input: 2 averages ; Output: 2 averages
Sources > Compute head model
Input: 2 averages ; Output: 2 averages
Sources > Compute sources
Input: 2 averages ; Output: all the source files (1 raw + 2 average + 199 epochs = 202 files)
Save the pipeline
Save in current workspace
Export as script