53138
Comment:
|
50348
|
Deletions are marked like this. | Additions are marked like this. |
Line 10: | Line 10: |
<<TableOfContents(2,2)>> == Background == [[Tutorials/Connectivity#Coherence|Coherence]] measures the linear relationship between two signals in the frequency domain. Previous studies ([[https://dx.doi.org/10.1113/jphysiol.1995.sp021104|Conway et al., 1995]], [[https://doi.org/10.1523/JNEUROSCI.20-23-08838.2000|Kilner et al., 2000]]) have reported corticomuscular coherence effects in the 15–30 Hz range during maintained voluntary contractions. IMAGE OF EXPERIMENT, SIGNALS and COHERENCE |
<<TableOfContents(3,2)>> |
Line 18: | Line 13: |
The dataset comprises MEG recordings (151-channel CTF MEG system) and bipolar EMG recordings (from left and right extensor carpi radialis longus muscles) from one participant who was tasked to lift their hand and exert a constant force against a lever for about 10 seconds. The force was monitored by strain gauges on the lever. The participant performed two blocks of 25 trials using either the left or right wrist. EOG signals were also recorded, which will be useful for detection and attenuation of ocular artifacts. We will analyze the data from the left-wrist trials in the present tutorial. Replicating the pipeline with right-wrist data is a good exercise to do next! | The dataset is distributed as part of the FieldTrip tutorial [[https://www.fieldtriptoolbox.org/tutorial/coherence/|Analysis of corticomuscular coherence]]: * One participant * MEG recordings: 151-channel CTF MEG system * Bipolar EMG recordings: from left and right extensor carpi radialis longus muscles * EOG recordings: used for detection and attenuation of ocular artifacts * MRI: 1.5T Siemens system * Task: The participant was tasked to lift their hand and exert a constant force against a lever for about 10 seconds. The force was monitored by strain gauges on the lever. The participant performed two blocks of 25 trials using either the left or right wrist. * We will analyze the data from the left-wrist trials in the present tutorial. Replicating the pipeline with right-wrist data is a good exercise to do next! Corticomuscular coherence: * [[Tutorials/Connectivity#Coherence|Coherence]] measures the linear relationship between two signals in the frequency domain. * Previous studies ([[https://dx.doi.org/10.1113/jphysiol.1995.sp021104|Conway et al., 1995]], [[https://doi.org/10.1523/JNEUROSCI.20-23-08838.2000|Kilner et al., 2000]]) have reported corticomuscular coherence effects in the 15–30 Hz range during maintained voluntary contractions. * TODO: IMAGE OF EXPERIMENT, SIGNALS and COHERENCE |
Line 21: | Line 30: |
* '''Requirements''': * Please make sure you have completed the [[Tutorials|get-started tutorials]] and that you have a working copy of Brainstorm installed on your computer. * In addition, you need to [[Tutorials/SegCAT12#Install_CAT12|install CAT12 plugin]], used here for MRI segmentation. * '''Download the dataset''': * Download `SubjectCMC.zip` from FieldTrip FTP server:<<BR>> ftp://ftp.fieldtriptoolbox.org/pub/fieldtrip/tutorial/SubjectCMC.zip * Unzip it in a folder not located in any of Brainstorm folders (the app or its database). * '''Brainstorm''': * Launch Brainstorm (via Matlab command line or the Matlab-free stand-alone version). * Select the menu '''''File > Create new protocol'''''. Name it `TutorialCMC` and select the options:<<BR>> '''No, use individual anatomy''', <<BR>> '''No, use one channel file per acquisition run'''. == Importing and processing anatomy data == * Right-click on the newly created '''TutorialCMC''' node in your Brainstorm data tree then: <<BR>> '''''New subject > Subject01'''''.<<BR>>Keep the default options defined for the study (aka "protocol" in Brainstorm jargon). * Switch to the '''Anatomy''' view of the protocol (<<Icon(iconSubjectDB.gif)>>). * Right-click on the '''Subject01''' node then '''''Import MRI''''': * Select the adequate file format from the pull-down menu: '''All MRI file (subject space)''' |
'''Requirements''' * Please make sure you have completed the [[Tutorials|get-started tutorials]] and that you have a working copy of Brainstorm installed on your computer. * In addition, you need to [[Tutorials/SegCAT12#Install_CAT12|install the plugin CAT12]], used for MRI segmentation. '''Download the dataset''' * Download `SubjectCMC.zip` from FieldTrip FTP server:<<BR>> ftp://ftp.fieldtriptoolbox.org/pub/fieldtrip/tutorial/SubjectCMC.zip * Unzip it in a folder not located in any of Brainstorm folders (the app or its database). '''Brainstorm''' * Launch Brainstorm (via Matlab command line or the Matlab-free stand-alone version). * Select the menu '''File > Create new protocol'''. Name it `TutorialCMC` and select the options:<<BR>> No, use individual anatomy, <<BR>> No, use one channel file per acquisition run. == Importing anatomy == * Right-click on the newly created TutorialCMC node > '''New subject > Subject01'''.<<BR>>Keep the default options defined for the study (aka "protocol" in Brainstorm jargon). * Switch to the Anatomy view of the protocol (<<Icon(iconSubjectDB.gif)>>). * Right-click on the Subject01 > '''Import MRI''': * Select the file format: '''All MRI files (subject space)''' |
Line 39: | Line 53: |
* This will open the '''MRI viewer''' showing the coronal, sagittal and axial views of the MRI. In addition, [[CoordinateSystems|three anatomical fiducials]]: left and right pre-auricular points (LPA and RPA), and nasion (NAS) are automatically identified. These fiducials are located near the left/right ears and just above the nose respectively. Click on '''Save'''. . [[https://neuroimage.usc.edu/brainstorm/Tutorials/CorticomuscularCoherence?action=AttachFile&do=get&target=mri_viewer.png|{{attachment:mri_viewer.png|https://neuroimage.usc.edu/brainstorm/Tutorials/CorticomuscularCoherence?action=AttachFile&do=get&target=mri_viewer.png}}]] We then need to segment the head tissues to obtain the surfaces required to derive a realistic MEG [[Tutorials/HeadModel|head models (aka "forward models")]]. Here, we will perform [[Tutorials/SegCAT12|MRI segmentation with CAT12]], this process takes between 30 to 60 minutes. * Right-click on the '''SubjectCMC''' MRI node (<<Icon(iconMri.gif)>>), then select '''''MRI segmentation > CAT12: Cortex, atlases, tissues'''''. This will prompt a series of windows to set the parameters for the MRI segmentation, use the following parameters: * '''Number of vertices on the cortex surface''' use `15000` * '''Compute anatomical parcellations?''' select `Yes` * '''Compute cortical maps''' select {{{No}}} . {{attachment:cat12.png||width="100%"}} CAT12 computes the '''scalp''' surface (<<Icon(iconScalp.gif)>>), and the '''cortex''' surfaces (<<Icon(iconCortexCut.gif)>>) for white matter, pial envelope and the midpoint between them. The default surface of each type is indicated in green. Moreover, as part of the MRI segmentation with CAT12, the anatomy data is normalized in the MNI space, and several anatomical parcellations (<<Icon(iconMriAtlas.gif)>>) are computed. For further information on the anatomy files see the [[Tutorials/ExploreAnatomy|Display the anatomy tutorial]]. . {{attachment:import_result.png||width="40%"}} * Double-click on the '''head mask''' and then on the '''central_15002''' surface to display them. * In addition, the registration between the MRI and the surfaces can be checked with context menu '''MRI registration > Check MRI/surface registration...''' . {{attachment:fig_anat_srf.png||width="60%"}} == Review the MEG and EMG recordings == === Link the recordings to Brainstorm database === * Switch now to the '''Functional data''' view (<<Icon(iconStudyDBSubj.gif)>>). * Right-click on the '''Subject01''' node then '''''Review raw file''''': * Select the file format of current data from the pulldown menu options:<<BR>> '''MEG/EEG: CTF(*.ds; *.meg4; *.res4)''' |
* This will open the MRI viewer showing the coronal, sagittal and axial views of the MRI. In addition, [[CoordinateSystems|three anatomical fiducials]]: left and right pre-auricular points (LPA and RPA), and nasion (NAS) are automatically identified. These fiducials are located near the left/right ears and just above the nose respectively. Click on '''Save'''. <<BR>><<BR>> {{attachment:mri_viewer.gif||width="344",height="295"}} * In a typical Brainstorm workflow, as illustrated in all the other tutorials, we would recommend running the full segmentation of the MRI at this stage, in order to have the anatomy of the subject fully prepared before importing the functional data. In the case of this tutorial, we will proceed differently, in order to follow better the original FieldTrip pipeline and to obtain sensor-level coherence results much faster. We will run the segmentation of the anatomy just before moving to the source-level analysis. * For validating the registration between the MRI and the MEG, we will now limit the anatomy processing to the reconstruction of the head surface from the MRI. * Right-click on the MRI (<<Icon(iconMri.gif)>>) > MRI segmentation > '''Generate head surface'''. <<BR>><<BR>> {{attachment:head_process.gif}} * At the end, you would get one new head surface. Double-click on it to display it.<<BR>><<BR>> {{attachment:head_display.gif}} == MEG and EMG recordings == === Link the recordings === * Switch now to the '''Functional data '''view (<<Icon(iconStudyDBSubj.gif)>>). * Right-click on the Subject01 > '''Review raw file''': * Select the file format: '''MEG/EEG: CTF(*.ds; *.meg4; *.res4)''' |
Line 67: | Line 67: |
A new folder is now created in Brainstorm database explorer and contains: * '''SubjectCMC''': a folder that provides access to the MEG dataset. Note the "RAW" tag over the icon of the folder (<<Icon(iconRawFolderClose.gif)>>), indicating the files contain unprocessed, continuous data. * '''CTF channels (191)''': a node containing '''channel information''' with all channel types, names, locations, etc. The number of channels available (MEG, EMG, EOG etc.) is indicated between parentheses '''(here, 191)'''. * '''Link to raw file''' provides access to '''the original data file'''. All the relevant metadata was read from the dataset and copied inside the node itself (e.g., sampling rate, number of time samples, event markers). Note that Brainstorm logic is not to import/duplicate the raw unprocessed data directly into the database. Instead, Brainstorm provides a link to that raw file for further review and data extraction ([[Tutorials/ChannelFile#Review_vs_Import|more information]]). |
* A new folder '''SubjectCMC '''is created in the Brainstorm database explorer. Note the "RAW" tag over the icon of the folder (<<Icon(iconRawFolderClose.gif)>>), indicating the files contain unprocessed, continuous data. It contains: * '''CTF channels (191)''': Channel file with all channel types, names, locations, etc. The number of channels available (MEG, EMG, EOG etc.) is indicated between parentheses. * '''Link to raw file''': Provides access to the original data file. All the relevant metadata was read from the dataset and copied inside the node itself (e.g., sampling rate, number of time samples, event markers). Note that Brainstorm logic is not to import/duplicate the raw unprocessed data directly into the database. Instead, Brainstorm provides a link to that raw file for further review and data extraction ([[Tutorials/ChannelFile#Review_vs_Import|more information]]). |
Line 76: | Line 74: |
Often simply known as '''registration''', is the alignment of the sensors on the anatomy of the subject. For this tutorial data registration is carried out using '''only''' three anatomical landmarks present in the MRI and MEG data. According to the description of the data in the [[https://www.fieldtriptoolbox.org/tutorial/coherence/|FieldTrip tutorial]]. <<BR>> . "To measure the head position with respect to the sensors, three coils were placed at anatomical landmarks of the head (nasion, left and right ear canal). [...] During the MRI scan, ear molds containing small containers filled with vitamin E marked the same landmarks. This allows us, together with the anatomical landmarks, to align source estimates of the MEG with the MRI." {{{#!wiki note In Brainstorm, when linking raw recordings, the alignment of the sensors and the anatomy is performed with [[Tutorials/ChannelFile#Automatic_registration|automatic registration]] when [[CoordinateSystems|fiducial points]] and [[Tutorials/TutDigitize|digitized head points]] are available. }}} To verify the registration: * Right-click on the '''CTF channels (191)''' node, then select '''''MRI registration > Check'''''. This opens a 3D figure showing the inner surface of the MEG helmet, the head surface, and the fiducials and axes that comprise the [[CoordinateSystems#Subject_Coordinate_System_.28SCS_.2F_CTF.29|subject coordinate system (SCS)]]. . {{attachment:fig_registration.png||width="50%"}} |
* This step, sometimes simply named ''registration'', refers to the alignment of the sensors on the anatomy of the subject ([[https://neuroimage.usc.edu/brainstorm/Tutorials/ChannelFile#Automatic_registration|more info]]). For this tutorial, data registration is carried out using only three anatomical landmarks present in the MRI and MEG data. According to the description of the data in the [[https://www.fieldtriptoolbox.org/tutorial/coherence/|FieldTrip tutorial]]:<<BR>>''"To measure the head position with respect to the sensors, three coils were placed at anatomical landmarks of the head (nasion, left and right ear canal). [...] During the MRI scan, ear molds containing small containers filled with vitamin E marked the same landmarks. This allows us, together with the anatomical landmarks, to align source estimates of the MEG with the MRI." '' * To verify the registration, right-click on the '''CTF channels''' node > '''MRI registration > Check'''. This opens a 3D figure showing the inner surface of the MEG helmet, the head surface, and the fiducials and axes that comprise the [[CoordinateSystems#Subject_Coordinate_System_.28SCS_.2F_CTF.29|subject coordinate system (SCS)]].<<BR>><<BR>> {{attachment:fig_registration.gif||width="209",height="204"}} |
Line 92: | Line 78: |
* Right-click on the '''Link to raw file''' node, then '''''Switch epoched/continuous''''' to convert the file to '''continuous''', a technical detail proper to CTF file formatting. * Right-click again on the '''Link to raw file''' node, then '''''MEG > Display time series''''' (or double-click on the node). This will open a new visualization window to explore data time series, also enabling the '''''Time''''' panel and the '''''Record''''' tab in the main Brainstorm window (see how to best use all controls in this panel and tab to [[Tutorials/ReviewRaw|explore data time series]]). * We will also display EMG traces by right-clicking on the '''Link to raw file''' node, then '''''EMG > Display time series'''''. |
* Right-click on Link to raw file > '''Switch epoched/continuous''' to convert the file to continuous, a technical detail proper to CTF file formatting. * Right-click on Link to raw file > '''MEG > Display time series''' (or double-click). This will open a new visualization window to explore data time series, also enabling the Time panel and the Record tab in the main Brainstorm window (see how to best use all controls in this panel and tab to [[Tutorials/ReviewRaw|explore data time series]]). * Right-click on Link to raw file > '''EMG > Display time series'''. |
Line 99: | Line 85: |
The colored dots above the data time series indicate [[Tutorials/EventMarkers|event markers]] (or triggers) saved with this dataset. The trial onset information of the left-wrist and right-wrist trials is saved in an auxiliary channel of the raw data named '''Stim'''. To add these markers, these events need to be decoded as follows: * While the time series figure is open, go to the '''''Record''''' tab and '''''File > Read events from channel'''''. From the options of the '''Read from channel''' process window, set '''Event channels''' = `Stim`, select '''Value''', and click '''Run'''. |
The colored dots above the data time series indicate [[Tutorials/EventMarkers|event markers]] (or triggers) saved with this dataset. The trial onset information of the left-wrist and right-wrist trials is saved in an auxiliary channel of the raw data named ''Stim''. To add these markers, these events need to be decoded as follows: * While the time series figure is open, go to the Record tab and '''File > Read events from channel'''. Event channels = `Stim`, select Value, and click '''Run'''. |
Line 105: | Line 91: |
This procedure creates new event markers now shown in the '''''Events''''' section of the tab, along with previous event categories. In this tutorial, we will only use events '''U1''' through '''U25''', which correspond to the beginning of each of the 25 trials of 10 seconds with left-wrist movements. To make sure we reproduce FieldTrip tutorial, we need to reject trial #7, event '''U7'''. We will now delete other events of no interest, and merge the left trial events under a single event category, for convenience: * Select the events to delete in the event box/list with '''Ctrl+click''' / '''Shift+click''', then in the menu '''''Events > Delete group''''' and confirm. Alternatively, you can select all events with '''Ctrl+A''' and deselect the '''U1''' to '''U25''' events by clicking on them. * Select events '''U1''' to '''U6''' and '''U8''' to '''U25''', (remember that '''U7''' will not be used) then from the '''Events '''menu, select''' Merge group''' and type in new label ('''Left''') to describe this as the left-wrist condition. . {{attachment:left_24.png}} These events correspond to the beginning of 10-second trials of left-wrist movements. {{{#!wiki warning TO BE REMOVED: We will compute coherence over 1-second epochs over the first 8s of each trial. To that purpose, we will now create extra events to define these epochs. * Duplicate 7 times the '''Left''' events by selecting '''''Duplicate group''''' in the '''''Events''''' menu. The groups '''Left_02''' to '''Left_08''' will be created. * For each copy of the '''Left''' events, we will add a time offset of 1 s for '''Left02''', 2 s for '''Left03''', and so on. Select the '''Left '''event group to add a 1,000 ms time offset, by going to the menu '''''Events > Add time offset'', '''enter 1,000 in the text box. Repeat for each other group, entering 2,000, then 3,000 etc. . {{attachment:dup_offset.png}} * Once done for '''Left_08''', merge all these '''Left*''' events into a single '''Left '''category, and select '''''Save modifications''''' in the '''''File''''' menu in the '''''Record''''' tab. . {{attachment:left_192.png}} }}} == Pre-process == |
* This creates new event markers now shown in the Events section of the tab, along with previous event categories. In this tutorial, we will only use events '''U1''' through '''U25''', which correspond to the beginning of each of the 25 trials of 10 seconds with left-wrist movements. To make sure we reproduce FieldTrip tutorial, we need to reject trial #7, event '''U7'''. * Delete unused events: Select all the events '''except''' '''U1-U6''' and '''U8-25''' (Ctrl+click / Shift+click), then menu '''Events > Delete group''' (or press the Delete key). * Merge events: Select all the event groups, then menu '''Events > ''' Merge group > '''"Left"'''. This new event category references 24 trials of the left-wrist condition, i.e. 10-second blocks of left-wrist movements.<<BR>><<BR>> {{attachment:left_24.gif}} == Pre-processing == |
Line 136: | Line 101: |
{{{#!wiki warning TO BE REMOVED: Another idiosyncrasy of the present dataset is that the CTF MEG data were saved without the desired 3-rd order gradient compensation for optimal denoising. We will now apply this compensation as follows: * In the '''''Process1''''' box: Drag and drop the '''Link to raw file''' node. * Run process '''''Artifacts > Apply SSP & CTF compensation''''':<<BR>> . {{attachment:pro_ctf_compensation.png||width="60%"}} This process creates the '''SubjectCMC_clean''' folder that contains a copy of the '''channel file''' and a link to the raw file '''Raw | clean''', which points to the original data and to the fact that the 3-rd order gradient compensation will be applied. Brainstorm does not create a physical copy of the actual, large dataset at this stage. . {{attachment:tre_raw_clean.png||width="40%"}} }}} === Removal of power line artifacts === We will start with identifying the spectral components of power line contamination of MEG and EMG recordings. * In the '''''Process1''''' box: Drag and drop the '''Link to raw file''' node. |
=== Power line artifacts === * In the Process1 box: Drag and drop the '''Link to raw file'''. |
Line 154: | Line 104: |
* '''Time window''': `0 - 330 s` * '''Window length='''`10 s` * '''Overlap'''=`50%` * '''Sensor types'''=`MEG, EMG` |
* '''Time window''': `0-330 s` * '''Window length''':''' '''`10 s` * '''Overlap''': `50%` * '''Sensor types''': `MEG, EMG` |
Line 161: | Line 111: |
* Double-click on the new '''PSD''' file to visualize the power spectrum density of the data.<<BR>> | * Double-click on the new PSD file to visualize the power spectrum density of the data.<<BR>> |
Line 165: | Line 115: |
* In the '''''Process1''''' box: Drag and drop the '''Raw | clean''' node. * Run the process '''''Pre-processing > Notch filter''''' with: <<BR>> |
* In the Process1 box: Drag and drop the '''Raw | clean''' node. * Run the process '''Pre-processing > Notch filter''' with: <<BR>> |
Line 169: | Line 119: |
* '''Sensor types''' = `MEG, EMG` * '''Frequencies to remove (Hz)''' = `50, 100, 150` |
* '''Sensor types''': `MEG, EMG` * '''Frequencies to remove (Hz)''': `50, 100, 150` |
Line 174: | Line 124: |
{{{#!wiki note The '''Process the entire file at once''' option applies the '''CTF compensation''' on the data if it has not been already applied. As drawback the entire file will be loaded into memory. If RAM is insufficient, the CTF compensation can be applied independently with the process '''Artifacts > Apply SSP & CTF compensation''', see [[Tutorials/TutMindNeuromag#Existing_SSP_and_pre-processing|more information]] }}} A new '''raw''' folder named '''SubjectCMC_clean_notch''' is created. Estimate the PSD of these signals to appreciate the effect of the notch filters applied. As above, please remember to indicate a '''Time window''' restricted from 0 to 330 s in the options of the PSD process. |
* Troubleshooting in case of memory error:<<BR>>These MEG recordings have been saved before applying the CTF 3rd-order gradient compensation. The compensation weights are applied on the fly when Brainstorm reads data from the file, however this requires reading all the channels at once. By default, the frequency filter are optimized to process the channels sequentially, which is incompatible with applying the CTF compensation on the fly. This setting can be overridden with the option '''Process the entire file at once''', but this solution has the effect of loading the entire file in memory at once, which can crash on computers with limited memory (RAM < 8Gb). If this happens to you: run the process '''Artifacts > Apply SSP & CTF compensation''' on the file first, then the notch filter without the option "Process the entire file at once" ([[https://neuroimage.usc.edu/brainstorm/Tutorials/TutMindNeuromag#Existing_SSP_and_pre-processing|more information]]). * A new folder named '''SubjectCMC_clean_notch''' is created. Estimate the PSD of these signals to appreciate the effect of the notch filters applied. As above, please remember to indicate a '''Time window''' restricted from 0 to 330 s in the options of the PSD process.<<BR>><<BR>> |
Line 184: | Line 131: |
* In the '''''Process1''''' box: drag and drop the '''Raw | notch(50Hz 100Hz 150Hz)''' node. * Add the process '''''Pre-process > Band-pass filter''''' |
* In the Process1 box: drag and drop the '''Raw | notch(50Hz 100Hz 150Hz)''' node. * Add the process '''Pre-process > Band-pass filter''' |
Line 190: | Line 137: |
* Add the process '''''Pre-process > Absolute values''''' | * Add the process '''Pre-process > Absolute values''' |
Line 197: | Line 144: |
Two new folders '''SubjectCMC_notch_high''' and '''SubjectCMC_notch_high_abs''' are added to Brainstorm database explorer. We can now safely delete folders that are not needed anymore: * Delete '''SubjectCMC_notch''' and '''SubjectCMC_notch_high '''by selecting both before pressing Delete (or right-click '''''File > Delete'''''). |
* Delete intermediate files that won't be needed anymore: Select folders '''SubjectCMC_notch''' and '''SubjectCMC_notch_high''',''' '''then press the Delete key (or right-click > File > Delete).<<BR>><<BR>> {{attachment:db_filters.gif}} |
Line 202: | Line 147: |
==== Detection and removal of artifacts with SSP ==== | ==== Blink correction with SSP ==== |
Line 205: | Line 150: |
* Right-click on the pre-processed file, ie '''Raw | notch(50Hz 100Hz 150Hz) | high(10Hz) | abs''', then select '''''MEG > Display time series''''' and '''''EOG > Display time series'''''. * In the '''Events''' section of the '''''Record''''' tab, select '''''Artifacts > Detect eye blinks''''', and use the parameters: |
* Right-click on the pre-processed file > '''MEG > Display time series''' and '''EOG > Display time series'''. * In the Record tab: '''Artifacts > Detect eye blinks''', and use the parameters: |
Line 218: | Line 163: |
* To [[Tutorials/ArtifactsSsp|remove blink artifacts with SSP]] go to '''''Artifacts > SSP: Eye blinks''''', and use the parameters: | * To [[Tutorials/ArtifactsSsp|remove blink artifacts with SSP]], go to '''Artifacts > SSP: Eye blinks''': |
Line 221: | Line 166: |
* Check '''Compute using existing SSP/ICA projectors''' | |
Line 225: | Line 169: |
* Display the time series and topographies of the first two (dominant) SSP components identified. In the present case, only the first SSP component can be clearly related to blinks. Select only component #1 for removal. | * Display the time series and topographies of the first two SSP components identified. In the present case, only the first SSP component can be clearly related to blinks: percentage between brackets much higher than the others, typical spatial topography, time series highly correlated with the EOG signal. Select only '''component #1''' for removal. |
Line 229: | Line 173: |
* Follow the same procedure for the other blink events ('''blink2''' and '''blink3'''). As mentioned above, none of the first two SSP components seem to be related to ocular artifacts. The figure below shows the visualization of the first two components for the '''blink2''' group. . {{attachment:ssp_blink2.png||width="100%"}} . We therefore recommend unselecting the '''blink2''' and '''blink3''' groups from the '''Select Active Projectors''' panel (see below) rather than removing spatial components which nature remains ambiguous. . {{attachment:ssp_active_projections.png||width="60%"}} * Click on the large '''×''' at the top right of the main Brainstorm window to close all visualization windows. ==== Detection of "bad" data segments: ==== |
* The second SSP component could be related with other ocular artifacts. For a more precise characterization of this artifact, it could be better indicated to use the other events detected on the EOG (blink2 and blink3). We will not do this here because advanced SSP cleaning is not the main topic of this tutorial. * Close all figures: Click on the large '''×''' at the top-right of the main Brainstorm window. ==== Detection of "bad" data segments ==== |
Line 242: | Line 180: |
* Display the MEG and EOG time series. In the '''''Record''''' tab, select '''''Artifacts > Detect other artifacts''''' and enter the following parameters: | * Display the MEG and EOG time series. In the '''Record''' tab, select '''Artifacts > Detect other artifacts''' and enter the following parameters: |
Line 250: | Line 188: |
We encourage users to review and validate the segments marked using this procedure. In the present case, the segments detected as bad clearly point at contaminated MEG data segments. We will now label these as "bad". * Select the '''1-7Hz''' and '''40-240Hz''' event groups and select '''Events > Mark group as bad''' from the contextual menu. Alternatively, you can also rename the events created above and append the '''bad_''' prefix to their name: Brainstorm will automatically discard these data segments from further processing. |
* We encourage users to review all the segments marked using this procedure. In the present case, all the segments detected clearly point at artifacts. * Select the '''1-7Hz''' and '''40-240Hz''' event groups and select '''Events > Mark group as bad'''. Alternatively, you can add the prefix '''bad_''' to the event names. Brainstorm will automatically discard these data segments from further processing. |
Line 259: | Line 197: |
At this point we are finished with the pre-processing of the EMG and MEG recordings. We will now extract and import specific data segments of interest into the Brainstorm database for further derivations. We refer to these segments as '''epochs''' or '''trials'''. As mentioned previously, we will focus on the '''Left''' (wrist) category of events. To follow the same pipeline as the [[https://www.fieldtriptoolbox.org/tutorial/coherence/|FieldTrip tutorial]], only the first 8 1-s epochs for each trial are imported. In addition DC offset is removed only for MEG signals. * Drag-and-drop the pre-processed file, ie '''Raw | notch(50Hz 100Hz 150Hz) | high(10Hz) | abs''', to the '''''Process1''''' box. * Add the process '''''Import > Import recordings > Import MEG/EEG: Events''''' and set its parameters: * '''Subject name''' = `Subject01` should be set |
We are finished with the pre-processing of the EMG and MEG recordings. We will now extract and import specific data segments of interest into the Brainstorm database for further derivations. As mentioned previously, we will focus on the '''Left''' category of events (left wrist movements). To follow the same pipeline as the [[https://www.fieldtriptoolbox.org/tutorial/coherence/|FieldTrip tutorial]]: we will consider 8 seconds of recordings after each trigger (out of the 10s of each trial), and split them in epochs of 1 second. In addition DC offset is removed, only for MEG signals. * In the Process1 box: Drag-and-drop the pre-processed file. * Select the process '''Import > Import recordings > Import MEG/EEG: Events''': * '''Subject name''' = `Subject01` |
Line 270: | Line 208: |
* Uncheck '''Create a separate folder for each event type''' * Check '''Ignore shorter epochs''' * Check '''Use CTF compensation''' * Check '''Use SSP/ICA projectors''' * Add the process '''''Pre-process > Remove DC offset''''' and set its parameters: |
* Uncheck '''Create a separate folder for each event type''' * Check '''Ignore shorter epochs''' * Check '''Use CTF compensation''' * Check '''Use SSP/ICA projectors''' * Add the process '''Pre-process > Remove DC offset''': |
Line 284: | Line 222: |
{{{#!wiki warning OLD VERSION OF IMPORTING * Right-click on the pre-processed continuous file '''Raw | notch(...''' (in the '''SubjectCMC_notch_high_abs''' condition), then '''''Import in database'''''. . {{attachment:import_menu.png||width="40%"}} * Enter the following parameter values: * '''Time window''' = `0 - 330 s` * Check '''Split in time blocks of:''' and set `1.0 s` * Check '''Use events''' and highlight the '''Left(x192)''' event group * '''Epoch time''' = `0 - 8000 ms` * Check '''Apply SSP/ICA projectors''' * Uncheck '''Remove DC offset''' and select '''All recordings''' * Uncheck '''Resample recordings''' * Uncheck '''Create a separate folder for each event type''' . {{attachment:import_options.png||width="80%"}} }}} A new folder '''SubjectCMC_notch_high_abs''' without the 'raw' indication is created for '''Subject01'''. The new folder contains a copy of the '''channel file''' from the original raw file, and 192 (24 trials, 8 epochs each) individual trials tagged as '''Left''' in a new trial group (<<Icon(iconEegList.gif)>>). Expand the trial group and note there are trials marked with an exclamation mark in a red circle (<<Icon(iconModifBad.gif)>>). This indicates trials that contain segments of signal occurred in the '''bad''' segments we [[#Detection_of_.22bad.22_data_segments:|previously identified]]. All the bad trials will be automatically ignored for further processing, whenever dropped into the '''''Process1''''' and '''''Process2''''' tabs. |
* A new folder '''SubjectCMC_notch_high_abs''' without the 'raw' indication is created, including '''192 epochs''' (24 trials x 8 epochs each). The epochs overlapping with a "bad" event are marked as bad and identified with an exclamation mark in a red circle (<<Icon(iconModifBad.gif)>>). The bad epochs will be automatically ignored by the '''Process1''' and '''Process2''' tabs, and therefore excluded from further processing. |
Line 311: | Line 226: |
To have a glance of the signals after the pre-processing, plot the MEG signal for one sensor overlying the left motor-cortex (MRC21) and the EMG signals, both for trial 1. Note that these traces are similar to the ones obtained in the [[https://www.fieldtriptoolbox.org/tutorial/coherence/|FieldTrip tutorial]]. || {{attachment:bst_trial_1.png}} || || {{attachment:ft_trial_1.png}} || |
==== Comparison with FieldTrip ==== The figures below represent the EMG and MRC21 channels (sensor over the left motor-cortex) from the epoch #1.1, in Brainstorm (left) and in the [[https://www.fieldtriptoolbox.org/tutorial/coherence/|FieldTrip tutorial]] (right). {{attachment:bst_ft_trial1.png||width="100%"}} |
Line 316: | Line 232: |
We will now compute the '''magnitude square coherence (MSC)''' between the '''left EMG''' signal and each of the MEG sensor data. * In the '''''Process1''''' box, drag and drop the '''Left (192 files)''' trial group. |
Let's compute the '''magnitude square coherence (MSC)''' between the '''left EMG''' and the '''MEG''' channels. * In the Process1 box, drag and drop the '''Left (192 files)''' trial group. |
Line 321: | Line 237: |
* Run the process '''''Connectivity > Coherence 1xN [2021]''''' with the following parameters: | * Select the process '''Connectivity > Coherence 1xN [2021]''': |
Line 332: | Line 248: |
. {{attachment:coh_meg_emgleft.png||width="60%"}} * Double-click on the resulting node '''mscohere(0.6Hz,555win): EMGlft''' to display the MSC spectra. Click on the maximum peak in the 15 to 20 Hz range, and press `Enter` to plot it in a new figure. This spectrum corresponds to channel '''MRC21''', and shows a large peak at 17.58 Hz. You can also use the frequency slider (under the '''''Time''''' panel) to explore the MSC output more precisely across frequencies. * Right-click on the spectrum and select '''2D Sensor cap''' for a topographical representation of the magnitude of the coherence results across the sensor array. You may also use the shortcut `Ctrl-T`. The sensor locations can be displayed with a right-click and by selecting '''''Channels > Display sensors'' '''from the contextual menu (shortcut `Ctrl-E)`. |
* Add the process '''File > Add tag''' with the following parameters: * '''Tag to add''' = `MEG sensors` * Select '''Add to file name''' * Run the pipeline || {{attachment:coh_meg_emgleft.png}} || || {{attachment:coh_meg_emgleft2.png}} || * Double-click on the resulting node '''mscohere(0.6Hz,555win): EMGlft | MEG sensors''' to display the MSC spectra. Click on the maximum peak in the 15 to 20 Hz range, and press `Enter` to plot the selected sensor in a new figure. This spectrum corresponds to channel '''MRC21''', and shows a large peak at 17.58 Hz. You can also use the frequency slider (under the Time panel) to explore the MSC output more precisely across frequencies. * Right-click on the spectrum and select '''2D Sensor cap''' for a topographical representation of the magnitude of the coherence results across the sensor array. You may also use the shortcut `Ctrl-T`. The sensor locations can be displayed with a right-click and by selecting '''Channels > Display sensors''' from the contextual menu (shortcut `Ctrl-E)`. |
Line 340: | Line 263: |
We can now average magnitude of the MSC across a frequency band of interest (15-20 Hz): * In the '''''Process1''''' box, drag-and-drop the '''mscohere(0.6Hz,555win): EMGlft''' node, and add the process '''''Frequency > Group in time or frequency bands''''' with the parameters: * Select '''Group by frequency''' |
* We can now average magnitude of the MSC over the beta band (15-20 Hz). <<BR>>In the Process1 box, select the new '''mscohere''' file. * Run process '''Frequency > Group in time or frequency bands''': * Select '''Group by frequency bands''' |
Line 348: | Line 270: |
The resulting file '''mscohere(0.6Hz,555win): EMGlft | tfbands''' has only one MSC value for each sensor (the MSC average in the 15-20 Hz band). You may visualize the topography of this MSC statistics via 3 possible representations: '''2D Sensor cap''', '''2D Sensor cap''' and '''2D Disk''', which are all accessible via a right-click over the MSC node. We clicked on sensor '''MRC21''' below; it is shown in red. . {{attachment:res_coh_meg_emgleft1520.png||width="100%"}} We can observe higher MSC values between the EMG signal and MEG sensor signals over the contralateral set of central sensors in the beta band. Unfortunately, [[Tutorials/Connectivity#Sensor-level|sensor-level connectivity presents the disadvantages]] of not being interpretable, and being subject to spurious results due to volume conduction. In the next section we will compute coherence in the source level. To do this, we first need to estimate the sources time series from the sensor data. == MEG source modelling == We will perform source modelling using a [[Tutorials/HeadModel#Dipole_fitting_vs_distributed_models|distributed model]] approach for two possible source spaces: the '''cortex surface''' and the entire '''MRI volume'''. In the '''surface space''', a source grid is made with the source located on the cortical surface obtained from the participant's MRI. For the '''volume space''', the source grid consists of elementary sources uniformly distributed across the entire brain volume. Before estimating the brain sources, we need to derive the sensor '''noise covariance matrix''', and the '''head model'''. === Noise covariance === The [[Tutorials/NoiseCovariance#The_case_of_MEG|recommendation for MEG]], is to extract basic noise statistics from empty-room recordings. However, when recommended empty-room recordings are not available, as with this tutorial data, resting-state data can be used as proxies for MEG noise covariance. See the [[Tutorials/NoiseCovariance|noise covariance tutorial]] for more details. * In the raw '''SubjectCMC_clean_notch_high_abs '''node, right-click over '''Raw | clean | notch(...'''and select '''''Noise covariance > Compute from recordings'''''. Please enter the following parameters: * '''Baseline:''' from `18 to 30 s` * Select the '''Block by block''' option. . {{attachment:pro_noise_cov.png||width="60%"}} * Copy the '''Noise covariance''' (<<Icon(iconNoiseCov.gif)>>) node to the '''SubjectCMC_preprocessed''' folder. This can be done using the shortcuts `Ctrl-C` and `Ctrl-V`. . {{attachment:tre_covmat.png||width="50%"}} === Head model === The [[Tutorials/HeadModel|head model]], aka forward model, accounts for how neural electrical currents (in a source space) produce magnetic fields captured by sensors outside the head, considering head tissues electromagnetic properties and geometry, independently of actual empirical measurements. As the head model depends on the source space, a distinct head model is required for the surface and volume source spaces. Please refer to the [[Tutorials/HeadModel|head model tutorial]] for more in-depth explanations. ==== Surface ==== * Go to the '''Anatomy''' view of the database and verify that the '''pial_15002V''' surface is the default (green characters) cortex surface. Otherwise, right-click on it and select '''Set as default cortex''' in the contextual menu. * Go back '''Functional data''' view of the database, and inside the '''SubjectCMC_preprocessed''' folder, right-click over '''CTF channels (191)''' and select '''Compute head model '''from the contextual menu. Run the process with the options as indicated below: |
* The resulting file '''mscohere...|tfbands''' has only one MSC value for each sensor (the MSC average in the 15-20 Hz band). Right-click on the file to display a 2D or 3D topography. <<BR>><<BR>> {{attachment:res_coh_tfgroup.gif}} * We can observe higher MSC values between the EMG signal and MEG sensor signals over the contralateral set of central sensors in the beta band. Unfortunately, [[Tutorials/Connectivity#Sensor-level|sensor-level connectivity]] is difficult to interpret. In the rest of this tutorial, we will compute coherence at the source level. == Source estimation == === MRI segmentation === In order to estimate the brain sources for these MEG recordings, we first need to reconstruct the cortex surface from the T1 MRI imported at the beginning of this tutorial. For this puropose, we decided to use [[https://neuroimage.usc.edu/brainstorm/Tutorials/SegCAT12|CAT12]] because it is fast (30-60min) and fully integrated with Brainstorm as a plugin. * Switch back to the Anatomy view of the protocol (<<Icon(iconSubjectDB.gif)>>). * Right-click on the MRI (<<Icon(iconMri.gif)>>) > '''MRI segmentation > CAT12''': * '''Number of vertices'''{{{: }}}`15000` * '''Anatomical parcellations''': `Yes` * '''Cortical maps''': {{{No}}} . {{attachment:cat12.png||width="100%"}} * Keep the low-resolution central surface selected as the default cortex ('''central_15002V'''). This surface is the primary output of CAT12, and is located half-way between the pial envelope and the grey-white interface ([[https://neuroimage.usc.edu/brainstorm/Tutorials/SegCAT12|more information]]). The head surface was recomputed during the process, you now have two identical head surfaces: you can either delete one or simply ignore this detail. * For quality control, double-click on the head and central_15002V surfaces to display them.<<BR>><<BR>> {{attachment:cat12_files.gif}} === Head model: Surface === We will perform source modeling using a [[Tutorials/HeadModel#Dipole_fitting_vs_distributed_models|distributed model]] approach for two different source spaces: the '''cortex surface''' and the entire '''MRI volume'''. The forward model, labelled ''head model'' in Brainstorm, accounts for how neural electrical currents produce magnetic fields captured by sensors outside the head, considering head tissues electromagnetic properties and geometry, independently of actual empirical measurements ([[http://neuroimage.usc.edu/brainstorm/Tutorials/HeadModel|more information]]). As the head model depends on the source space, a distinct head model is required for the surface and volume source spaces: we will compute them both now. * Go back to the '''Functional data''' view of the database. * Right-click on the channel file of the imported epochs folder > '''Compute head model'''. |
Line 382: | Line 297: |
The cortical head model will be derived from each of the 15,000 sources (surface vertices) as defined in the default cortex. . {{attachment:pro_head_model_srf.png||width="40%"}} The '''Overlapping spheres (surface)''' head model (<<Icon(iconHeadModel.gif)>>) now appears in the database explorer. ==== Volume ==== * In the '''SubjectCMC_preprocessed''' folder, right-click over the '''CTF channels (191)''' node and select '''''Compute head model'''''. Set the option values to: |
. {{attachment:pro_head_model_srf.gif}} === Head model: Volume === * Right-click on the channel file again > '''Compute head model'''. |
Line 393: | Line 304: |
. {{attachment:pro_head_model_vol.png||width="40%"}} * In the '''Volume source grid''' window, specify the following parameters that will produce around '''11,500''' source grid points across the brain volume. |
|
Line 400: | Line 307: |
. {{attachment:pro_grid_vol.png||width="60%"}} The '''Overlapping spheres (volume)''' head model is now added to the database explorer. The green color indicates this is the default head model for the current folder (this can be changed by simply double clicking over the head model nodes.) . {{attachment:tre_head_models.png||width="50%"}} |
. {{attachment:pro_head_model_vol.gif}} * The '''Overlapping spheres (volume)''' head model is now added to the database explorer. The green color indicates this is the default head model for the current folder: this can be changed by double clicking on a different head model. . {{attachment:tre_head_models.gif}} === Noise covariance === The [[Tutorials/NoiseCovariance#The_case_of_MEG|recommendation for MEG]] is to extract basic noise statistics from empty-room recordings. When not available, resting-state data can be used as proxies for MEG noise covariance. We will use a segment of the MEG recordings, away from the task or major artifacts: '''18s-29s'''. * Right-click on the clean continuous file > '''Noise covariance > Compute from recordings'''.<<BR>><<BR>>{{attachment:pro_noise_cov.gif}} * Right-click on the Noise covariance (<<Icon(iconNoiseCov.gif)>>) > '''Copy to other folders'''.<<BR>><<BR>>{{attachment:tre_covmat.gif}} |
Line 459: | Line 374: |
* To select the source maps we want to include in the coherence estimation, click on the [[Tutorials/PipelineEditor#Search_Database|Search Database]] button (<<Icon(iconZoom.gif)>>), and select '''''New search'''''. | * To select the source maps we want to include in the coherence estimation, click on the [[Tutorials/PipelineEditor#Search_Database|Search Database]] button (<<Icon(iconZoom.gif)>>), and select '''New search'''. |
Line 494: | Line 409: |
* Once the processing is finish. Go to the '''Database''' tab of the database explorer and refresh it (with '''[F5]''') to show the resulting 1xN connectivity file (<<Icon(iconConnect1.gif)>>) '''mscohere(0.6Hz,555win): Left (#1) | (surface)(Constr)'''. | * Once the processing is finish. Go to the '''Database''' tab of the database explorer and refresh it (with '''[F5]''') to show the resulting 1xN connectivity file (<<Icon(iconConnect1.gif)>>) '''mscohere(0.6Hz,555win): EMGlft | (surface)(Constr)'''. |
Line 503: | Line 418: |
* Adjust the '''amplitude threshold''' to '''99%''' | * To compare the results, set manually the [[Tutorials/Colormaps|colormap]] range to `[0 - 0.07]` * In the '''Surface''' tab * Set the '''Smooth''' slider to `30%` * Adjust the '''amplitude threshold''' to `95%` |
Line 506: | Line 424: |
The highest coherence value is located on the '''right primary motor cortex''' (precentral gyrus) at 14.65 Hz for the analysis using constrained and unconstrained sources. Set the '''amplitude threshold''' to '''0%''' to see the extension of the high coherence values. | The highest coherence value is located on the '''right primary motor cortex''' (precentral gyrus) around 14.65 Hz for the analysis using constrained and unconstrained sources. Set the '''amplitude threshold''' to '''0%''' to see the extension of the high coherence values. |
Line 513: | Line 431: |
We observe that results obtained with constrained and unconstrained sources agree in the location and frequency of the peak coherence. The main difference between these results is that coherence values obtained with unconstrained sources appear smoother, this caused by the maximum aggregation performed across directions (explained at detail in the next section. Finally, right-click on any of the cortex figures and select '''''Get coordinates'''''. Then click on the right motor cortex with the crosshair cursor that appears. The [[CoordinateSystems|SCS]] coordinates will be useful in the next section. <<BR>> SCS coordinates '''X:38.6''', '''Y:-21.3''' and '''Z: 115.5''' |
We observe that results obtained with constrained and unconstrained sources agree in the location and frequency of the peak coherence. The main difference between these results is that coherence values obtained with unconstrained sources appear smoother, this caused by the maximum aggregation performed across directions, explained at detail in the next section. Finally, right-click on any of the cortex figures and select '''Get coordinates'''. Then click on the right motor cortex with the crosshair cursor that appears. The [[CoordinateSystems|SCS]] coordinates will be useful in the next section. <<BR>> SCS coordinates '''X:39.2''', '''Y:-22.3''' and '''Z: 113.0''' |
Line 523: | Line 441: |
* Set the SCS coordinates to '''X:38.6''', '''Y:-21.3''' and '''Z: 115.5''' * Set the '''Transparency''' of the coherence values (Data) in the '''''Surface''''' tab to '''30%''' |
* Set the SCS coordinates to '''X:39.2''', '''Y:-22.3''' and '''Z: 113.0''' * Set the '''Transparency''' of the coherence values (Data) in the '''Surface''' tab to '''20%''' |
Line 535: | Line 453: |
FIGURE (Diagram needed) | [[https://neuroimage.usc.edu/brainstorm/Tutorials/CorticomuscularCoherence?action=AttachFile&do=get&target=diagram_1xn_coh_constr.png|{{attachment:diagram_1xn_coh_constr.png|https://neuroimage.usc.edu/brainstorm/Tutorials/CorticomuscularCoherence?action=AttachFile&do=get&target=diagram_1xn_coh_constr.png|width="100%"}}]] |
Line 539: | Line 457: |
FIGURE (Diagram needed) | [[https://neuroimage.usc.edu/brainstorm/Tutorials/CorticomuscularCoherence?action=AttachFile&do=get&target=diagram_1xn_coh_unconstr.png|{{attachment:diagram_1xn_coh_unconstr.png|https://neuroimage.usc.edu/brainstorm/Tutorials/CorticomuscularCoherence?action=AttachFile&do=get&target=diagram_1xn_coh_unconstr.png|width="100%"}}]] |
Line 544: | Line 462: |
[[https://neuroimage.usc.edu/brainstorm/Tutorials/CorticomuscularCoherence?action=AttachFile&do=get&target=diagram_1xn_coh_flattened.png|{{attachment:diagram_1xn_coh_flattened.png||width="100%"}}]] |
|
Line 545: | Line 466: |
* We have tested this flattening approach with simulations and the real data (from this tutorial) and we have found decremental effects on the expected results. | * We have tested this flattening approach with simulations and the real data (from this tutorial) and we have found decrimental effects on the expected results. |
Line 553: | Line 474: |
* When the within-scout aggregation takes place. Either '''before''' or '''after''' the coherence estimation. | * When the within-scout aggregation takes place. Either '''before''' or '''after''' the coherence computation. |
Line 556: | Line 477: |
. FIGURE (Diagram needed) * '''After''': Coherence is computed between the reference signal and each direction of the vertices' source time series, [[#Coherence_1xN_.28source_level.29|as in the previous section]]. Then, the scout function is applied on the coherence spectra for each direction of the vertices within a scout, finally these spectra are aggregated across dimensions to obtain a coherence spectrum per scout. . FIGURE (Diagram needed) |
[[https://neuroimage.usc.edu/brainstorm/Tutorials/CorticomuscularCoherence?action=AttachFile&do=get&target=diagram_1xn_coh_sct_bef.png|{{attachment:diagram_1xn_coh_sct_bef.png|https://neuroimage.usc.edu/brainstorm/Tutorials/CorticomuscularCoherence?action=AttachFile&do=get&target=diagram_1xn_coh_sct_bef.png|width="100%"}}]] * '''After''': Coherence is computed between the reference signal and each direction of the vertices' source time series, [[#Coherence_1xN_.28source_level.29|as in the previous section]]. Then, the scout function is applied on the coherence spectra for each direction of the vertices within a scout, finally these spectra are aggregated across dimensions to obtain a coherence spectrum per scout. [[https://neuroimage.usc.edu/brainstorm/Tutorials/CorticomuscularCoherence?action=AttachFile&do=get&target=diagram_1xn_coh_sct_aft.png|{{attachment:diagram_1xn_coh_sct_aft.png|https://neuroimage.usc.edu/brainstorm/Tutorials/CorticomuscularCoherence?action=AttachFile&do=get&target=diagram_1xn_coh_sct_aft.png|width="100%"}}]] |
Line 599: | Line 520: |
Double-click on the resulting file. This time the coherence spectra are not displayed on the cortex, but they are plotted for each scout is show. Right click, and it can be also shown as image. | Open the file: '''mscohere(0.6Hz,555win): EMGlft x 102 scouts, mean before | (surface)(Constr)''' by double-clicking on it. This time the coherence spectra are not displayed on the cortex, but they are plotted for each scout. Moreover, 1xN connectivity file can be shown as image. |
Line 605: | Line 526: |
Note that for 14.65 Hz, the higher peak corresponds to the '''SomMotA_2 R''' scout located over the right primary motor cortex. | Note that for 14.65 Hz, the highest two peaks correspond to the '''SomMotA_4 R''' and '''SomMotA_2 R''' scouts, both located over the right primary motor cortex. |
Line 624: | Line 545: |
FIGURE (Diagram needed) FIGURE (Diagram needed) |
Scout function '''before''': [[https://neuroimage.usc.edu/brainstorm/Tutorials/CorticomuscularCoherence?action=AttachFile&do=get&target=diagram_nxn_coh_sct_bef.png|{{attachment:diagram_nxn_coh_sct_bef.png|https://neuroimage.usc.edu/brainstorm/Tutorials/CorticomuscularCoherence?action=AttachFile&do=get&target=diagram_nxn_coh_sct_bef.png|width="100%"}}]] Scout function '''after''': [[https://neuroimage.usc.edu/brainstorm/Tutorials/CorticomuscularCoherence?action=AttachFile&do=get&target=diagram_nxn_coh_sct_aft.png|{{attachment:diagram_nxn_coh_sct_aft.png|https://neuroimage.usc.edu/brainstorm/Tutorials/CorticomuscularCoherence?action=AttachFile&do=get&target=diagram_nxn_coh_sct_aft.png|width="100%"}}]] {{{#!wiki tip As in the [[#Coherence_1xN_.28scout_level.29|coherence 1xN with scouts]] case, the '''After''' option takes longer and uses way more resources as it computes the coherence spectrum for each vertex in all the scouts, leading to arrays as big as '''[sources, sources, frequency bins]'''! }}} <<BR>> The result is a NxN connectivity file (<<Icon(iconConnectN.gif)>>), It contains (Scouts x Scouts) coherence spectra. {{attachment:diagram_nxn_coh_sct_end.png||width="70%"}} Such a visualization is not practical, thus the connectivity graph or the adjacent matrix are displayed for each frequency bin in the coherence spectra. For more details, see the [[Tutorials/ConnectivityGraph|connectivity graph tutorial]]. A coherence NxN example can be found in the main [[Tutorials/Connectivity|connectivituy tutorial]]. {{{#!wiki comment TO BE REMOVED |
Line 665: | Line 601: |
}}} |
Corticomuscular coherence (CTF MEG)
[TUTORIAL UNDER DEVELOPMENT: NOT READY FOR PUBLIC USE]
Authors: Raymundo Cassani, Francois Tadel & Sylvain Baillet.
Corticomuscular coherence measures the degree of similarity between electrophysiological signals (MEG, EEG, ECoG sensor traces or source time series, especially over the contralateral motor cortex) and the EMG signal recorded from muscle activity during voluntary movement. This signal similarity is due mainly to the descending communication along corticospinal pathways between primary motor cortex (M1) and muscles. For consistency and reproducibility purposes across major software toolkits, the present tutorial replicates the processing pipeline "Analysis of corticomuscular coherence" by FieldTrip.
Contents
- Dataset description
- Download and installation
- Importing anatomy
- MEG and EMG recordings
- Pre-processing
- Importing data epochs
- Coherence 1xN (sensor level)
- Source estimation
- Source estimation
- Coherence 1xN (source level)
- Coherence 1xN (scout level)
- Coherence NxN (scout level)
- Scripting
- Additional documentation
Dataset description
The dataset is distributed as part of the FieldTrip tutorial Analysis of corticomuscular coherence:
- One participant
- MEG recordings: 151-channel CTF MEG system
- Bipolar EMG recordings: from left and right extensor carpi radialis longus muscles
- EOG recordings: used for detection and attenuation of ocular artifacts
- MRI: 1.5T Siemens system
- Task: The participant was tasked to lift their hand and exert a constant force against a lever for about 10 seconds. The force was monitored by strain gauges on the lever. The participant performed two blocks of 25 trials using either the left or right wrist.
- We will analyze the data from the left-wrist trials in the present tutorial. Replicating the pipeline with right-wrist data is a good exercise to do next!
Corticomuscular coherence:
Coherence measures the linear relationship between two signals in the frequency domain.
Previous studies (Conway et al., 1995, Kilner et al., 2000) have reported corticomuscular coherence effects in the 15–30 Hz range during maintained voluntary contractions.
- TODO: IMAGE OF EXPERIMENT, SIGNALS and COHERENCE
Download and installation
Requirements
Please make sure you have completed the get-started tutorials and that you have a working copy of Brainstorm installed on your computer.
In addition, you need to install the plugin CAT12, used for MRI segmentation.
Download the dataset
Download SubjectCMC.zip from FieldTrip FTP server:
ftp://ftp.fieldtriptoolbox.org/pub/fieldtrip/tutorial/SubjectCMC.zip- Unzip it in a folder not located in any of Brainstorm folders (the app or its database).
Brainstorm
- Launch Brainstorm (via Matlab command line or the Matlab-free stand-alone version).
Select the menu File > Create new protocol. Name it TutorialCMC and select the options:
No, use individual anatomy,
No, use one channel file per acquisition run.
Importing anatomy
Right-click on the newly created TutorialCMC node > New subject > Subject01.
Keep the default options defined for the study (aka "protocol" in Brainstorm jargon).Switch to the Anatomy view of the protocol ().
Right-click on the Subject01 > Import MRI:
Select the file format: All MRI files (subject space)
Select the file: SubjectCMC/SubjectCMC.mri
This will open the MRI viewer showing the coronal, sagittal and axial views of the MRI. In addition, three anatomical fiducials: left and right pre-auricular points (LPA and RPA), and nasion (NAS) are automatically identified. These fiducials are located near the left/right ears and just above the nose respectively. Click on Save.
In a typical Brainstorm workflow, as illustrated in all the other tutorials, we would recommend running the full segmentation of the MRI at this stage, in order to have the anatomy of the subject fully prepared before importing the functional data. In the case of this tutorial, we will proceed differently, in order to follow better the original FieldTrip pipeline and to obtain sensor-level coherence results much faster. We will run the segmentation of the anatomy just before moving to the source-level analysis.
- For validating the registration between the MRI and the MEG, we will now limit the anatomy processing to the reconstruction of the head surface from the MRI.
Right-click on the MRI () > MRI segmentation > Generate head surface.
At the end, you would get one new head surface. Double-click on it to display it.
MEG and EMG recordings
Link the recordings
Switch now to the Functional data view ().
Right-click on the Subject01 > Review raw file:
Select the file format: MEG/EEG: CTF(*.ds; *.meg4; *.res4)
Select the file: SubjectCMC.ds
A new folder SubjectCMC is created in the Brainstorm database explorer. Note the "RAW" tag over the icon of the folder (), indicating the files contain unprocessed, continuous data. It contains:
CTF channels (191): Channel file with all channel types, names, locations, etc. The number of channels available (MEG, EMG, EOG etc.) is indicated between parentheses.
Link to raw file: Provides access to the original data file. All the relevant metadata was read from the dataset and copied inside the node itself (e.g., sampling rate, number of time samples, event markers). Note that Brainstorm logic is not to import/duplicate the raw unprocessed data directly into the database. Instead, Brainstorm provides a link to that raw file for further review and data extraction (more information).
MEG-MRI coregistration
This step, sometimes simply named registration, refers to the alignment of the sensors on the anatomy of the subject (more info). For this tutorial, data registration is carried out using only three anatomical landmarks present in the MRI and MEG data. According to the description of the data in the FieldTrip tutorial:
"To measure the head position with respect to the sensors, three coils were placed at anatomical landmarks of the head (nasion, left and right ear canal). [...] During the MRI scan, ear molds containing small containers filled with vitamin E marked the same landmarks. This allows us, together with the anatomical landmarks, to align source estimates of the MEG with the MRI."To verify the registration, right-click on the CTF channels node > MRI registration > Check. This opens a 3D figure showing the inner surface of the MEG helmet, the head surface, and the fiducials and axes that comprise the subject coordinate system (SCS).
Reviewing continuous recordings
Right-click on Link to raw file > Switch epoched/continuous to convert the file to continuous, a technical detail proper to CTF file formatting.
Right-click on Link to raw file > MEG > Display time series (or double-click). This will open a new visualization window to explore data time series, also enabling the Time panel and the Record tab in the main Brainstorm window (see how to best use all controls in this panel and tab to explore data time series).
Right-click on Link to raw file > EMG > Display time series.
Event markers
The colored dots above the data time series indicate event markers (or triggers) saved with this dataset. The trial onset information of the left-wrist and right-wrist trials is saved in an auxiliary channel of the raw data named Stim. To add these markers, these events need to be decoded as follows:
While the time series figure is open, go to the Record tab and File > Read events from channel. Event channels = Stim, select Value, and click Run.
This creates new event markers now shown in the Events section of the tab, along with previous event categories. In this tutorial, we will only use events U1 through U25, which correspond to the beginning of each of the 25 trials of 10 seconds with left-wrist movements. To make sure we reproduce FieldTrip tutorial, we need to reject trial #7, event U7.
Delete unused events: Select all the events except U1-U6 and U8-25 (Ctrl+click / Shift+click), then menu Events > Delete group (or press the Delete key).
Merge events: Select all the event groups, then menu Events > Merge group > "Left". This new event category references 24 trials of the left-wrist condition, i.e. 10-second blocks of left-wrist movements.
Pre-processing
In this tutorial, we will analyze only the Left trials (left-wrist extensions). In the following sections, we will process only the first 330 s of the recordings, where the left-wrist trials were performed.
Power line artifacts
In the Process1 box: Drag and drop the Link to raw file.
Run process Frequency > Power spectrum density (Welch):
Time window: 0-330 s
Window length: 10 s
Overlap: 50%
Sensor types: MEG, EMG
Double-click on the new PSD file to visualize the power spectrum density of the data.
- The PSD plot shows two groups of sensors: EMG (highlighted in red above) and the MEG spectra below. Peaks at 50Hz and its harmonics (100, 150, 200Hz and above) correspond to the European power line and are clearly visible. We will use notch filters to attenuate power line contaminants at 50, 100 and 150 Hz.
In the Process1 box: Drag and drop the Raw | clean node.
Run the process Pre-processing > Notch filter with:
Check Process the entire file at once
Sensor types: MEG, EMG
Frequencies to remove (Hz): 50, 100, 150
Troubleshooting in case of memory error:
These MEG recordings have been saved before applying the CTF 3rd-order gradient compensation. The compensation weights are applied on the fly when Brainstorm reads data from the file, however this requires reading all the channels at once. By default, the frequency filter are optimized to process the channels sequentially, which is incompatible with applying the CTF compensation on the fly. This setting can be overridden with the option Process the entire file at once, but this solution has the effect of loading the entire file in memory at once, which can crash on computers with limited memory (RAM < 8Gb). If this happens to you: run the process Artifacts > Apply SSP & CTF compensation on the file first, then the notch filter without the option "Process the entire file at once" (more information).A new folder named SubjectCMC_clean_notch is created. Estimate the PSD of these signals to appreciate the effect of the notch filters applied. As above, please remember to indicate a Time window restricted from 0 to 330 s in the options of the PSD process.
EMG pre-processing
Two typical pre-processing steps for EMG consist in high-pass filtering and rectifying.
In the Process1 box: drag and drop the Raw | notch(50Hz 100Hz 150Hz) node.
Add the process Pre-process > Band-pass filter
Sensor types = EMG
Lower cutoff frequency = 10 Hz
Upper cutoff frequency = 0 Hz
Add the process Pre-process > Absolute values
Sensor types = EMG
- Run the pipeline
Delete intermediate files that won't be needed anymore: Select folders SubjectCMC_notch and SubjectCMC_notch_high, then press the Delete key (or right-click > File > Delete).
MEG pre-processing
Blink correction with SSP
Stereotypical artifacts such eye blinks and heartbeats can be identified from their respective characteristic spatial distributions. Their contamination of MEG signals can then be attenuated specifically using Signal-Space Projections (SSPs). For more details, consult the dedicated tutorials about the detection and removal of artifacts with SSP. The present tutorial dataset features an EOG channel but no ECG. We will perform only the removal of eye blinks.
Right-click on the pre-processed file > MEG > Display time series and EOG > Display time series.
In the Record tab: Artifacts > Detect eye blinks, and use the parameters:
Channel name= EOG
Time window = 0 - 330 s
Event name = blink
Three categories of blink events are created. Review the traces of EOG channels around a few of these events to ascertain they are related to eye blinks. In the present case, we note that the blink group contains genuine eye blinks, and that groups blink2 and blink3 capture saccade events.
To remove blink artifacts with SSP, go to Artifacts > SSP: Eye blinks:
Event name=blink
Sensors=MEG
Display the time series and topographies of the first two SSP components identified. In the present case, only the first SSP component can be clearly related to blinks: percentage between brackets much higher than the others, typical spatial topography, time series highly correlated with the EOG signal. Select only component #1 for removal.
- The second SSP component could be related with other ocular artifacts. For a more precise characterization of this artifact, it could be better indicated to use the other events detected on the EOG (blink2 and blink3). We will not do this here because advanced SSP cleaning is not the main topic of this tutorial.
Close all figures: Click on the large × at the top-right of the main Brainstorm window.
Detection of "bad" data segments
Here we will use the automatic detection of artifacts to identify data segments contaminated by e.g., large eye and head movements and muscle contractions.
Display the MEG and EOG time series. In the Record tab, select Artifacts > Detect other artifacts and enter the following parameters:
Time window = 0 - 330 s
Sensor types=MEG
Sensitivity=3
Check both frequency bands 1-7 Hz and 40-240 Hz
- We encourage users to review all the segments marked using this procedure. In the present case, all the segments detected clearly point at artifacts.
Select the 1-7Hz and 40-240Hz event groups and select Events > Mark group as bad. Alternatively, you can add the prefix bad_ to the event names. Brainstorm will automatically discard these data segments from further processing.
- Close all visualization windows and reply "Yes" to the save the modifications query.
Importing data epochs
We are finished with the pre-processing of the EMG and MEG recordings. We will now extract and import specific data segments of interest into the Brainstorm database for further derivations. As mentioned previously, we will focus on the Left category of events (left wrist movements). To follow the same pipeline as the FieldTrip tutorial: we will consider 8 seconds of recordings after each trigger (out of the 10s of each trial), and split them in epochs of 1 second. In addition DC offset is removed, only for MEG signals.
- In the Process1 box: Drag-and-drop the pre-processed file.
Select the process Import > Import recordings > Import MEG/EEG: Events:
Subject name = Subject01
Folder name = empty
Event names = Left
Time window = 0 - 330 s
Epoch time = 0 - 8000 ms
Split recordings in time blocks = 1 s
Uncheck Create a separate folder for each event type
Check Ignore shorter epochs
Check Use CTF compensation
Check Use SSP/ICA projectors
Add the process Pre-process > Remove DC offset:
Baseline = All file
Sensor types = MEG
- Run the pipeline
|
|
|
A new folder SubjectCMC_notch_high_abs without the 'raw' indication is created, including 192 epochs (24 trials x 8 epochs each). The epochs overlapping with a "bad" event are marked as bad and identified with an exclamation mark in a red circle (). The bad epochs will be automatically ignored by the Process1 and Process2 tabs, and therefore excluded from further processing.
Comparison with FieldTrip
The figures below represent the EMG and MRC21 channels (sensor over the left motor-cortex) from the epoch #1.1, in Brainstorm (left) and in the FieldTrip tutorial (right).
Coherence 1xN (sensor level)
Let's compute the magnitude square coherence (MSC) between the left EMG and the MEG channels.
In the Process1 box, drag and drop the Left (192 files) trial group.
Select the process Connectivity > Coherence 1xN [2021]:
Time window = 0 - 1000 ms or check All file
Source channel = EMGlft
Do not check Include bad channels nor Remove evoke response
Magnitude squared coherence
Window length for PSD estimation = 0.5 s
Overlap for PSD estimation = 50%
Highest frequency of interest = 80 Hz
Average cross-spectra of input files (one output file)
More details on the Coherence process can be found in the connectivity tutorial.
Add the process File > Add tag with the following parameters:
Tag to add = MEG sensors
Select Add to file name
- Run the pipeline
|
|
|
Double-click on the resulting node mscohere(0.6Hz,555win): EMGlft | MEG sensors to display the MSC spectra. Click on the maximum peak in the 15 to 20 Hz range, and press Enter to plot the selected sensor in a new figure. This spectrum corresponds to channel MRC21, and shows a large peak at 17.58 Hz. You can also use the frequency slider (under the Time panel) to explore the MSC output more precisely across frequencies.
Right-click on the spectrum and select 2D Sensor cap for a topographical representation of the magnitude of the coherence results across the sensor array. You may also use the shortcut Ctrl-T. The sensor locations can be displayed with a right-click and by selecting Channels > Display sensors from the contextual menu (shortcut Ctrl-E).
We can now average magnitude of the MSC over the beta band (15-20 Hz).
In the Process1 box, select the new mscohere file.Run process Frequency > Group in time or frequency bands:
Select Group by frequency bands
Type cmc_band / 15, 20 / mean in the text box.
The resulting file mscohere...|tfbands has only one MSC value for each sensor (the MSC average in the 15-20 Hz band). Right-click on the file to display a 2D or 3D topography.
We can observe higher MSC values between the EMG signal and MEG sensor signals over the contralateral set of central sensors in the beta band. Unfortunately, sensor-level connectivity is difficult to interpret. In the rest of this tutorial, we will compute coherence at the source level.
Source estimation
MRI segmentation
In order to estimate the brain sources for these MEG recordings, we first need to reconstruct the cortex surface from the T1 MRI imported at the beginning of this tutorial. For this puropose, we decided to use CAT12 because it is fast (30-60min) and fully integrated with Brainstorm as a plugin.
Switch back to the Anatomy view of the protocol ().
Right-click on the MRI () > MRI segmentation > CAT12:
Number of vertices: 15000
Anatomical parcellations: Yes
Cortical maps: No
Keep the low-resolution central surface selected as the default cortex (central_15002V). This surface is the primary output of CAT12, and is located half-way between the pial envelope and the grey-white interface (more information). The head surface was recomputed during the process, you now have two identical head surfaces: you can either delete one or simply ignore this detail.
For quality control, double-click on the head and central_15002V surfaces to display them.
Head model: Surface
We will perform source modeling using a distributed model approach for two different source spaces: the cortex surface and the entire MRI volume. The forward model, labelled head model in Brainstorm, accounts for how neural electrical currents produce magnetic fields captured by sensors outside the head, considering head tissues electromagnetic properties and geometry, independently of actual empirical measurements (more information). As the head model depends on the source space, a distinct head model is required for the surface and volume source spaces: we will compute them both now.
Go back to the Functional data view of the database.
Right-click on the channel file of the imported epochs folder > Compute head model.
Comment = Overlapping spheres (surface)
Source space = Cortex surface
Forward model = MEG Overlapping spheres.
Head model: Volume
Right-click on the channel file again > Compute head model.
Comment = Overlapping spheres (volume)
Source space = MRI volume
Forward model = Overlapping spheres.
Select Regular grid and Brain
Grid resolution = 5 mm
The Overlapping spheres (volume) head model is now added to the database explorer. The green color indicates this is the default head model for the current folder: this can be changed by double clicking on a different head model.
Noise covariance
The recommendation for MEG is to extract basic noise statistics from empty-room recordings. When not available, resting-state data can be used as proxies for MEG noise covariance. We will use a segment of the MEG recordings, away from the task or major artifacts: 18s-29s.
Right-click on the clean continuous file > Noise covariance > Compute from recordings.
Right-click on the Noise covariance () > Copy to other folders.
Source estimation
Now that the noise covariance and head model(s) are available, we will perform source estimation, to find the sources that gave origin to the signals registered in the sensors. From the diverse source estimation methods available in Brainstorm, in this tutorial the minimum-norm imaging method is used. The minimum-norm method estimates the linear combination of the current at each point in the source grid that explains the recorded sensor signals favouring minimum energy (L2-norm) solutions. As result, a large matrix called the imaging kernel is obtained. By multiplying the imaging kernel with the sensor data, it is possible to obtain the estimates of brain sources time series. A different imaging kernel is derived for each of the head models we have produced above: surface and volume. See the source estimation tutorial for more details.
Each dipole in the source grid may point arbitrarily in any direction in a 3D space.
Only for surface grids, the dipole orientation can be fixed to be normal to the cortical surface, this approach is based on anatomical observations of the brain cortex. The result is then in a smaller model that is faster to compute and display.
A discussion on constrained vs unconstrained sources is presented here.
Surface
Here we will estimate the sources in the surface space for constrained (normal to the cortex) and unconstrained dipole orientations.
Right-click on the Overlapping spheres (surface) head model and select Compute sources [2018]. Enter the following parameters:
Minimum norm imaging
Current density map
Constrained: Normal to the cortex
Comment = MN: MEG (surface)
Repeat the previous step, but this time select Unconstrained in the Dipole orientations field.
|
|
|
The inversion kernels () MN: MEG (surface)(Constr) 2018 and MN: MEG (surface)(Unconstr) 2018 are now available in the database explorer.
Volume
To compute the imaging kernel for the volume source space:
Right-click on the Overlapping spheres (volume) head model and select Compute sources [2018], with the following parameters:
Minimum norm imaging
Current density map
Unconstrained
Comment = MN: MEG (volume)
At this point the imaging kernel () MN: MEG (volume)(Unconstr) 2018 is now also available in the database explorer.
Note that each trial is associated with three source link () nodes, that correspond to each of the imaging kernels obtained above.
The source link nodes are not files containing the sources time series, instead, the links indicate Brainstorm to: load the corresponding MEG recordings, load the respective inverse kernel, and multiply the two on the fly to generate the sources time series. This approach saves space on the hard drive.
Coherence 1xN (source level)
Once we have computed the time series for the sources, it is time to compute coherence between the EMG signal and brain sources obtained with each of the imaging kernels.
Let's start with sources from the MN: MEG (surface)(Constr) kernel:
To select the source maps we want to include in the coherence estimation, click on the Search Database button (), and select New search.
Set the search parameters as shown below, and click on Search.
This will create a new tab in the database explorer. This new tab contains only the files that match the search criteria.
Click the Process2 tab at the bottom of the main Brainstorm window and drag-and-drop the Left (192 files) trial group into the Files A box and repeat for the Files B box. Select Process recordings () for Files A, and Process sources () for Files B. The logic is that we will extract from the same files the EMG signal (Files A side) and the sources time series (Files B side), and then compute coherence between these two sets. Note that blue labels over the Files A and the Files B boxes indicate that there are 185 "good trial" files per box.
Open the Pipeline editor:
Add the process Connectivity > Coherence AxB [2021] with the following parameters:
Time window = 0 - 1000 ms or check All file
Source channel (A) = EMGlft
Uncheck Use scouts (B)
Do not Remove evoked responses from each trial
Magnitude squared coherence, Window length = 0.5 s
Overlap = 50%
Highest frequency = 80 Hz
Average cross-spectra.
Add the process File > Add tag with the following parameters:
Tag to add = (surface)(Constr)
Select Add to file name
- Run the pipeline
|
|
|
Once the processing is finish. Go to the Database tab of the database explorer and refresh it (with [F5]) to show the resulting 1xN connectivity file () mscohere(0.6Hz,555win): EMGlft | (surface)(Constr).
Repeat the steps above to compute the EMG-sources coherence for the sources from the kernels MN: MEG (surface)(Unconstr) and MN: MEG (volume)(Unconstr). Do not forget to update the search criteria and the tag to be added to the result.
Results (Surface)
Double-click the 1xN connectivity files for the (surface) source space to show the results on the cortex. If you are not familiar with the options in the cortex figures, check Display: Cortex surface
Find the location and frequency with the highest coherence value.
To compare the results, set manually the colormap range to [0 - 0.07]
In the Surface tab
Set the Smooth slider to 30%
Adjust the amplitude threshold to 95%
Explore with coherence spectra with frequency slider
The highest coherence value is located on the right primary motor cortex (precentral gyrus) around 14.65 Hz for the analysis using constrained and unconstrained sources. Set the amplitude threshold to 0% to see the extension of the high coherence values.
|
|
|
MSC @ 14.65Hz (surface)(Constr) |
|
MSC @ 14.65Hz (surface)(Unconstr) |
We observe that results obtained with constrained and unconstrained sources agree in the location and frequency of the peak coherence. The main difference between these results is that coherence values obtained with unconstrained sources appear smoother, this caused by the maximum aggregation performed across directions, explained at detail in the next section.
Finally, right-click on any of the cortex figures and select Get coordinates. Then click on the right motor cortex with the crosshair cursor that appears. The SCS coordinates will be useful in the next section.
SCS coordinates X:39.2, Y:-22.3 and Z: 113.0
Results (Volume)
Double-click the 1xN connectivity file for the (volume) source space. Note that this time the results are shown in the MRI viewer rather than the cortical surface.
Set frequency slider to 14.65 Hz
Set the SCS coordinates to X:39.2, Y:-22.3 and Z: 113.0
Set the Transparency of the coherence values (Data) in the Surface tab to 20%
|
MSC @ 14.65Hz (volume)(Unconstr) |
We note that all the results obtained with constrained (surface) and unconstrained (surface and volume) sources agree with each other, and in the location and frequency of the peak coherence. Moreover, they agree with our hypothesis, previous results in the literature [REFS], and the results presented in the FieldTrip tutorial.
Coherence with constrained and unconstrained sources
For constrained sources, each vertex in the source grid is associated with ONE time series, as such, when coherence is computed with the EMG signal (also one time series), the result is ONE coherence spectrum per vertex. In other words, for each frequency bin, there is coherence brain map.
In the case of unconstrained sources, each vertex in the grid is associated with THREE time series, each one corresponding to the X, Y and Z directions. Thus, when coherence is computed with the EMG signal (one time series), there are THREE coherence spectra. This complicates its representation in the brain, thus; these THREE coherence spectra need to be flattened into one, resulting in one coherence spectrum per vertex, the maximum across directions is found for each frequency bin for each vertex.
An alternative approach in the literature, to address the 3-dimensional nature of the unconstrained sources, consists in flattening the vertex X, Y and Z time series before the coherence computation; resulting in a similar case as the constrained sources (REF). Common methods for this flattening include: PCA (only first component is kept), and (Euclidean) norm. This flattening of the time series can be performed in Brainstorm with the process: Sources > Unconstrained to flat map.
- Flattened sources are saved as full rather than recordings+kernel.
- We have tested this flattening approach with simulations and the real data (from this tutorial) and we have found decrimental effects on the expected results.
Coherence 1xN (scout level)
So far, we have computed coherence at the source level, thus, a coherence spectrum is computed for each of the 15002 source points. This large dimension hinders later analysis of the results. Therefore, the strategy is to reduce the dimensionality of the source space by using a surface- or volume-parcellation scheme, in Brainstorm jargon this is an atlas that is made of scouts. See the scout tutorial for detail information on atlases and scouts in Brainstorm.
Under this approach, instead of providing one result (coherence spectrum) per source vertex, one result is computed for each scout. When computing coherence (or other connectivity metrics) in the scout level, it is necessary to provide two parameters that define how the data is aggregated per scout:
The scout function (mean is often used), and
When the within-scout aggregation takes place. Either before or after the coherence computation.
Before: The scout function is applied for each direction on the vertices' source time series that make up a scout; resulting in one time series per direction per scout. Then, the scout time series are used to compute coherence with the reference signal (EMG in this tutorial), and the coherence spectra for each scout are aggregated across dimensions, as shown previously, to obtain one coherence spectrum per scout.
After: Coherence is computed between the reference signal and each direction of the vertices' source time series, as in the previous section. Then, the scout function is applied on the coherence spectra for each direction of the vertices within a scout, finally these spectra are aggregated across dimensions to obtain a coherence spectrum per scout.
As it can be seen, the After option takes longer and used more resources as it computes the coherence spectrum for each vertex in the scouts, and then, the coherence spectra are aggregated.
Let's here compute the coherence using scouts, using mean as scout function alongside with the Before option. We will use the Schaefer 100 parcellation atlas on the results from constrained sources.
Use Search Database () to select the Left trials with their respective (surface)(Constr) source maps, as shown in the previous section.
On the Process2 tab drag-and-drop the Left (192 files) trial group into the Files A and Files B boxes. Select Process recordings () for Files A, and Process sources () for Files B. There should be 185 files in each side.
Open the Pipeline editor:
Add the process Connectivity > Coherence AxB [2021] with the following parameters:
Time window = 0 - 1000 ms or check All file
Source channel (A) = EMGlft
Check Use scouts (B)
From the menu at the right, select Schaefer_100_17net
- Select all the scouts
Scout function: Mean
When to apply the scout function: Before
Do not Remove evoked responses from each trial
Magnitude squared coherence, Window length = 0.5 s
Overlap = 50%
Highest frequency = 80 Hz
Average cross-spectra.
Add the process File > Add tag with the following parameters:
Tag to add = (surface)(Constr)
Select Add to file name
- Run the pipeline
|
|
|
Open the file: mscohere(0.6Hz,555win): EMGlft x 102 scouts, mean before | (surface)(Constr) by double-clicking on it. This time the coherence spectra are not displayed on the cortex, but they are plotted for each scout. Moreover, 1xN connectivity file can be shown as image.
|
|
|
Note that for 14.65 Hz, the highest two peaks correspond to the SomMotA_4 R and SomMotA_2 R scouts, both located over the right primary motor cortex.
The choice of the optimal parcellation scheme for the source space is not easy.
The optimal choice is to choose a parcellation based on anatomy, for example the Brodmann parcellation.
In Brainstorm these atlases are imported in Brainstorm as scouts (cortical regions of interest), and saved directly in the surface files as explained in this tutorial here.
BRAINSTORM TEAM
Due to the current implementation of the bst_connectivity, the full source map for each trial (185) are loaded in memory, thus replicate the After, only for the (surface)(Constr) option ~30GB of RAM are needed! (Unconstrained take 3 times that).
Coherence NxN (scout level)
In previous sections, we have computed coherence between a reference signal (EMG) and sources (or scouts). However, depending on the experimental setup and hypotheses, we may want to study the brain as network, this is to say, to compute the NxN connectivity. Due to the large number of sources (often several thousands) while in theory it is possible to compute NxN connectivity, it is not practical, as such a common approach is to use of scouts to reflect the functional connections among its cell assemblies, resulting in a connectome.
Diverse studies have shown some overlap between connectomes derived from electrophysiological signals (MEG/EEG) and the ones derived from fMRI, which is reasonably expected as both are the result of the undergoing biological system. However, due to its nature, the electrophysiological connectomes provide unique insights on how functional communication is implemented in the brain (Sadaghiani et al., 2022).
Similar to the coherence 1xN with scouts, we need to define the scout function and when it is going to be applied. Note that computing coherence between two unconstrained leads to 9 (3x3) coherence spectra.
As in the coherence 1xN with scouts case, the After option takes longer and uses way more resources as it computes the coherence spectrum for each vertex in all the scouts, leading to arrays as big as [sources, sources, frequency bins]!
The result is a NxN connectivity file (), It contains (Scouts x Scouts) coherence spectra.
Such a visualization is not practical, thus the connectivity graph or the adjacent matrix are displayed for each frequency bin in the coherence spectra. For more details, see the connectivity graph tutorial.
A coherence NxN example can be found in the main connectivituy tutorial.
Scripting
Additional documentation
Articles
Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P, Weir AI, et al.
Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man.
The Journal of Physiology. 1995 Dec 15;489(3):917–24.Kilner JM, Baker SN, Salenius S, Hari R, Lemon RN.
Human Cortical Muscle Coherence Is Directly Related to Specific Motor Parameters.
J Neurosci. 2000 Dec 1;20(23):8838–45.Liu J, Sheng Y, Liu H.
Corticomuscular Coherence and Its Applications: A Review.
Front Hum Neurosci. 2019 Mar 20;13:100.Sadaghiani S, Brookes MJ, Baillet S.
Connectomics of human electrophysiology.
NeuroImage. 2022 Feb;247:118788.
Tutorials
Tutorial: Functional connectivity
Tutorial: Source estimation
Tutorial: Volume source estimation
Tutorial: Scouts
Tutorial: Connectivity graphs
Forum discussions
[TODO] Find relevant Forum posts.