Brainstorm
  • Comments
  • Menu
    • Attachments
    • Versions
    • Raw Text
    • Print View
  • Login

Software

  • Introduction

  • Gallery

  • Download

  • Installation

Users

  • Tutorials

  • Forum

  • Courses

  • Community

  • Publications

Development

  • What's new

  • What's next

  • About us

  • Contact us

  • Contribute

Revision 61 as of 2016-11-24 20:35:05
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

MEG current phantom (Elekta-Neuromag)

Authors: Ken Taylor, Francois Tadel, John Mosher

This tutorial explains how to import and process Elekta-Neuromag current phantom recordings. We decided to release this example for testing and cross-validation purposes. With these datasets, we can evaluate the equivalence of various forward models and dipole fitting methods in the case of simple recordings with single dipoles. The recordings are available in two file formats (native and FIF) to cross-validate the file readers available in Brainstorm and MNE. A similar page exists for the CTF phantom.

Contents

  1. License
  2. The phantom
  3. Description of the experiment
  4. Download and installation
  5. Generate anatomy
  6. Access the recordings
  7. Organize the events
  8. Import the dipole events
  9. Noise covariance
  10. Average trials
  11. Head modeling
  12. Dipole source estimation
  13. Dipole scanning
  14. Results
  15. Scripting

License

This tutorial dataset remains a property of its authors: Ken Taylor, John Mosher (Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, OH USA).

If you reference this dataset in your publications, please acknowledge them and cite Brainstorm as indicated on the website. For questions, please contact us through the forum.

The phantom

A current phantom is provided with the Elekta Neuromag for checking the system performance. It contains 32 artificial dipoles and four fixed head-position indicator coils. The phantom is based on the mathematical fact that an equilateral triangular line current produces equivalent magnetic field distribution to that of a tangential current dipole in a spherical conductor, provided that the vertex of the triangle and the origin of the conducting sphere coincide. For a detailed description of how the phantom works, see here.

The phantom dipoles are energized using an internal signal generator which also feeds the HPI coils. An external multiplexer box is used to connect the signal to the individual dipoles. Only one dipole can be activated at a time. The location of the dipole is recorded relative to the center of the sphere (0,0,0)m, where X is positive toward the nasion, Y is positive toward the left ear and Z is positive toward the top of the head (see the CoordinateSystems tutorial for more details).

Use of the phantom is shown below. Note that the uncovered version is the phantom that came with the Neuromag-122, which explicitly shows the wiring. The covered version uses the same principle but somewhat different dipole locations. Further details are available in Section 7.2 of the User's Manual.

  • phantom.gif

References

  • R.J. Ilmoniemi, M.S. Hämäläinen, and J. Knuutila, The Forward and Inverse Problems in the Spherical Model. In: Biomagnetism: Applications and Theory, eds. H. Weinberg, G. Stroink, T. Katil, Pergamon Press, 1985.
  • Elekta Neuromag System Hardware User's Manual, Revision G, September 2005.

Description of the experiment

Files distributed as part of the phantom Elekta tutorial:

  • kojak_all_2000nAm_pp_no_chpi_no_ms_raw.fif
    Source = 2000 nAm. This corresponds to an unrealistically strong 1,000 nA-m (2,000 nA-m peak to peak) dipole that gives the highest SNR visualization of the experimental source.

  • kojak_all_200nAm_pp_no_chpi_no_ms_raw.fif
    Source = 200 nAm. This is a weaker dipole, closer to the range of amplitudes we can expect from inter-ictal spikes due to epilepsy, visible in raw data.

  • kojak_all_20nAm_pp_no_chpi_no_ms_raw.fif
    Source = 20 nAm. This represents some of the weakest sources we expect in evoked studies which require averaging to detect and estimate (i.e. generally cannot be seen in single trials).

  • All recordings were performed by John Mosher in the MEG lab at the Cleveland Clinic with an Elekta phantom.

Download and installation

  • Requirements: You have followed the introduction tutorials and Brainstorm is installed.

  • Go to the Download page and download the file: sample_phantom_elekta.zip

  • Unzip it in a folder that is not in any of the Brainstorm folders (program folder or database folder)
  • Start Brainstorm (Matlab scripts or stand-alone version)
  • Select the menu File > Create new protocol. Name it TutorialPhantomElekta and select:

    • No, use individual anatomy,

    • No, use one channel file per acquisition run (MEG).

Generate anatomy

  • In the Matlab command window: type "generate_phantom_elekta".

  • This creates a new subject Kojak (so named after the 70's TV show) and generates the "anatomy" for this device: one volume and a few surfaces representing the geometry of the phantom.

  • kojak_anat.gif

  • You can display the MRI and surfaces as presented in the introduction tutorials.

    phantom_mri.gif phantom_surfaces.gif

Access the recordings

We can now review one of the raw kojak data sets. These have been generated by sequentially activating each of the 32 phantom dipoles in a single raw file.

  • Switch to the functional data view by clicking the second button under the protocol name.

  • Right-click on the subject folder > Review raw file.

    • Select the file format: "MEG/EEG: Elekta-Neuromag (*.fif)"

    • Select the 200nA file: sample_phantom_elekta/kojak_all_200nAm...fif

  • Click Event channel, select STI201, and hit OK.

  • A figure is opened at the end of the import to show the position of the phantom in the MEG:

    phantom_registration.gif

Organize the events

  • Double click the link to raw file: it opens the recordings and shows the list of the events.
  • In the Record tab, rename your groups so that the ordering remains convenient:
    • Double-click on event group "1" (or menu Events > Rename group), rename it to 01.

    • Repeat this for events #2-#9.
  • Some unnecessary triggers are generated by the neuromag system, we will delete them:
    • Select all the categories with only one event (#256-#7939), press the delete key.

  • These steps can also be performed from your MATLAB command window:
    • Close the file viewer.
    • Right-click on the link > File > Export to Matlab > "link"

    • Run the lines of code below:
      for i = 1:32
          STR = str2num(link.F.events(i).label);
          link.F.events(i).label = sprintf('%02.0f',STR);
      end
      link.F.events(33:end) = [];
    • Right-click on the link > File > Import from Matlab > "link".

  • There is also a switching transient in the phantom generator which should be removed:
    • Select category 01, click on the first time instant and press the delete key.

  • Events should now appear as per the image below on the right:

  • editing_events.gif

  • Close the recordings figure to save the modifications.

Import the dipole events

Right click on Link to raw file > Import in database:

  • Select all the events #01-#32, Epoch time = [-100,300]ms

  • Uncheck Apply SSP/ICA projectors (we will use noise covariance to stabilize the data)

  • Check Remove DC offset, time range = [-100,-10]ms

  • Resample the recordings to 100Hz (change from 1000Hz)

  • Do not create separate folders

  • Click Import

    kojak_dipole_import.gif

Noise covariance

With the epochs imported, we can now calculate the noise covariance from the prestims:

  • Select all the imported epochs (click on the first group, hold the shift key, click on the last).
  • Right-click on any epochs group > Noise covariance > Compute from recordings.

  • Keep the default options, and hit OK.

  • kojak_noise_covariance.gif

Average trials

  • In Process1, select all the 32 trials groups.
  • Run process Average > Average files > By trial group (folder average).

  • kojak_average.gif

Head modeling

  • Right-click on the channel file > Compute head model > MRI volume, Single sphere.

    kojak_head_model.gif

  • A figure opens showing a sphere fit to the phantom, however we can see that the location is not exactly (0,0,0). We can adjust it manually:
    • Click the Edit sphere properties button in the top toolbar.

    • Change the center location to [ 0 0 0 ] and hit OK.

  • Click the [OK] button. A window appears allowing adjustment of the volume source grid.

  • Select Regular grid (isotropic) with Grid resolution 2.5mm.
    This results in an around 56K grid point, which is sufficient.

    kojak_sphere.gif

Dipole source estimation

  • Right click the Single sphere (volume) and select Compute sources [2016]

  • Select: Dipole modeling, Unconstrained, MEG GRAD only

  • Click Show details to show the advanced options, select No covariance regularization

  • Ignore the other settings, and click OK.

    kojak_compute_sources.gif

Dipole scanning

  • In Process1, select the 32 averages and click on [Process sources].

  • Run process: Sources > Dipole scanning > Time window=[60,60]ms

    kojak_dipole_scanning.gif

  • We would like to group the 32 new dipole files together. Two methods for this:
    • Select all the dipoles files from the database explorer (requires that you expand all the average nodes), right-click > Merge dipoles.

    • Execute the lines of code below in your Matlab command window:
      sStudy = bst_get('StudyWithCondition','Kojak/kojak_all_200nAm_pp_no_chpi_no_ms_raw');
      DipolesFile = dipoles_merge({sStudy.Dipoles.FileName});
  • As an optional step, we can sign flip the dipoles so that they all point up for convenience:
    • Right-click on dipole file Merge: 32 files > File > Export to Matlab > "dip"

    • Execute the lines of code below in your Matlab command window:
      for i = 1:32
          dip.Dipole(i).Amplitude = dip.Dipole(i).Amplitude * ...
          sign(dip.Dipole(i).Amplitude(3));
      end
      dip.Comment = [dip.Comment ' | flipped'];
    • Right-click on the folder containing all these files > File > Import from Matlab > "dip".

  • Merged the flipped dipoles file with the true dipole positions:
    • Select "Merge: 32 files | flipped" and "True phantom dipoles" (in folder TrueDipoles)

    • Right-click on one of them > Merge dipoles.

    • Rename this file into something more meaningful (eg. "comparison").
  • Right-click on this last file > Display on MRI (3D), or double-click on the file. The true dipole locations are shown in blue (0ms) along with the estimated locations in red (60ms).

    kojak_3D.gif

Results

 Dipole stats

 Dipole      Loc (mm)      Amp (nA-m)  Gof     Perf       Chi2     RChi2
--------------------------------------------------------------------------
  01 - [ -0.4 -60.4  21.3]    75.3    98.8%    208.6    532 (201)   2.65
  02 - [  2.1 -47.9  23.8]    80.2    97.9%    117.4    303 (201)   1.51
  03 - [ -0.4 -35.4  23.8]    80.1    94.2%     64.5    258 (201)   1.28
  04 - [ -0.4 -25.4  21.3]    75.0    84.3%     36.3    245 (201)   1.22
  05 - [  2.1 -35.4  51.3]    83.8    98.2%    154.4    442 (201)   2.20
  06 - [  2.1 -25.4  43.8]    90.8    96.8%     87.9    258 (201)   1.28
  07 - [  2.1 -12.9  38.8]    94.9    91.9%     53.2    249 (201)   1.24
  08 - [  2.1  -5.4  33.8]    75.7    80.9%     30.6    222 (201)   1.11
  09 - [-60.4  -0.4  21.3]    77.2    98.7%    204.2    560 (201)   2.78
  10 - [-47.9  -0.4  23.8]    82.3    98.1%    120.0    282 (201)   1.40
  11 - [-35.4  -0.4  23.8]    83.2    94.7%     69.0    268 (201)   1.33
  12 - [-25.4  -0.4  21.3]    79.9    88.7%     42.3    227 (201)   1.13
  13 - [-35.4   2.1  51.3]    83.8    98.4%    178.3    513 (201)   2.55
  14 - [-27.9   2.1  46.3]    76.8    96.8%    101.6    336 (201)   1.67
  15 - [-15.4   2.1  38.8]    87.6    93.4%     60.9    261 (201)   1.30
  16 - [ -5.4   2.1  33.8]    73.0    82.9%     35.1    255 (201)   1.27
  17 - [ -0.4  47.1  41.3]    84.9    98.6%    176.4    434 (201)   2.16
  18 - [ -0.4  44.6  31.3]    75.9    98.0%    106.0    229 (201)   1.14
  19 - [ -0.4  39.6  18.8]    79.5    94.4%     68.6    277 (201)   1.38
  20 - [ -0.4  34.6   8.8]    72.1    88.8%     42.3    224 (201)   1.12
  21 - [ -0.4  14.6  61.3]    78.8    98.3%    131.7    305 (201)   1.52
  22 - [  2.1  17.1  48.8]    86.7    96.1%     82.2    272 (201)   1.36
  23 - [  2.1  22.1  36.3]    84.2    92.6%     55.9    251 (201)   1.25
  24 - [  2.1  19.6  23.8]    87.5    83.9%     36.7    259 (201)   1.29
  25 - [ 47.1   2.1  43.8]    80.5    97.1%     94.2    267 (201)   1.33
  26 - [ 42.1  -0.4  31.3]    82.8    93.7%     61.7    255 (201)   1.27
  27 - [ 37.1  -0.4  18.8]    86.2    88.7%     45.6    265 (201)   1.32
  28 - [ 29.6   2.1  13.8]    81.2    87.3%     32.6    155 (201)   0.77
  29 - [ 14.6   2.1  58.8]    91.3    97.6%    129.0    406 (201)   2.02
  30 - [ 17.1   2.1  48.8]    85.6    95.8%     76.7    258 (201)   1.28
  31 - [ 19.6   2.1  38.8]    78.5    91.1%     48.3    227 (201)   1.13
  32 - [ 19.6  -0.4  23.8]    90.2    84.2%     34.2    220 (201)   1.09

 Location errors from true

 Dipole      Loc (mm)            True (mm)         Diff [x y z]     Norm (mm)
------------------------------------------------------------------------------
  01 - [ -0.4 -60.4  21.3] [  0.0 -59.7  22.9] [ -0.4  -0.7  -1.6]   (  1.8)
  02 - [  2.1 -47.9  23.8] [  0.0 -48.6  23.5] [  2.1   0.7   0.3]   (  2.3)
  03 - [ -0.4 -35.4  23.8] [  0.0 -35.8  25.5] [ -0.4   0.4  -1.7]   (  1.8)
  04 - [ -0.4 -25.4  21.3] [  0.0 -24.8  23.1] [ -0.4  -0.6  -1.8]   (  2.0)
  05 - [  2.1 -35.4  51.3] [  0.0 -37.2  52.0] [  2.1   1.8  -0.7]   (  2.9)
  06 - [  2.1 -25.4  43.8] [  0.0 -27.5  46.4] [  2.1   2.1  -2.6]   (  4.0)
  07 - [  2.1 -12.9  38.8] [  0.0 -15.8  41.0] [  2.1   2.9  -2.2]   (  4.2)
  08 - [  2.1  -5.4  33.8] [  0.0  -7.9  33.0] [  2.1   2.5   0.8]   (  3.4)
  09 - [-60.4  -0.4  21.3] [-59.7  -0.0  22.9] [ -0.7  -0.4  -1.6]   (  1.8)
  10 - [-47.9  -0.4  23.8] [-48.6  -0.0  23.5] [  0.7  -0.4   0.3]   (  0.9)
  11 - [-35.4  -0.4  23.8] [-35.8  -0.0  25.5] [  0.4  -0.4  -1.7]   (  1.8)
  12 - [-25.4  -0.4  21.3] [-24.8  -0.0  23.1] [ -0.6  -0.4  -1.8]   (  2.0)
  13 - [-35.4   2.1  51.3] [-37.2  -0.0  52.0] [  1.8   2.1  -0.7]   (  2.9)
  14 - [-27.9   2.1  46.3] [-27.5  -0.0  46.4] [ -0.4   2.1  -0.1]   (  2.1)
  15 - [-15.4   2.1  38.8] [-15.8  -0.0  41.0] [  0.4   2.1  -2.2]   (  3.1)
  16 - [ -5.4   2.1  33.8] [ -7.9  -0.0  33.0] [  2.5   2.1   0.8]   (  3.4)
  17 - [ -0.4  47.1  41.3] [  0.0  46.1  44.4] [ -0.4   1.0  -3.1]   (  3.3)
  18 - [ -0.4  44.6  31.3] [  0.0  41.9  34.0] [ -0.4   2.7  -2.7]   (  3.8)
  19 - [ -0.4  39.6  18.8] [  0.0  38.3  21.6] [ -0.4   1.3  -2.8]   (  3.1)
  20 - [ -0.4  34.6   8.8] [  0.0  31.5  12.7] [ -0.4   3.1  -3.9]   (  5.0)
  21 - [ -0.4  14.6  61.3] [  0.0  13.9  62.4] [ -0.4   0.7  -1.1]   (  1.4)
  22 - [  2.1  17.1  48.8] [  0.0  16.2  51.5] [  2.1   0.9  -2.7]   (  3.6)
  23 - [  2.1  22.1  36.3] [  0.0  20.0  39.1] [  2.1   2.1  -2.8]   (  4.1)
  24 - [  2.1  19.6  23.8] [  0.0  19.3  27.9] [  2.1   0.3  -4.1]   (  4.7)
  25 - [ 47.1   2.1  43.8] [ 46.1  -0.0  44.4] [  1.0   2.1  -0.6]   (  2.4)
  26 - [ 42.1  -0.4  31.3] [ 41.9  -0.0  34.0] [  0.2  -0.4  -2.7]   (  2.8)
  27 - [ 37.1  -0.4  18.8] [ 38.3  -0.0  21.6] [ -1.2  -0.4  -2.8]   (  3.1)
  28 - [ 29.6   2.1  13.8] [ 31.5  -0.0  12.7] [ -1.9   2.1   1.1]   (  3.0)
  29 - [ 14.6   2.1  58.8] [ 13.9  -0.0  62.4] [  0.7   2.1  -3.6]   (  4.2)
  30 - [ 17.1   2.1  48.8] [ 16.2  -0.0  51.5] [  0.9   2.1  -2.7]   (  3.6)
  31 - [ 19.6   2.1  38.8] [ 20.0  -0.0  39.1] [ -0.4   2.1  -0.3]   (  2.1)
  32 - [ 19.6  -0.4  23.8] [ 19.3  -0.0  27.9] [  0.3  -0.4  -4.1]   (  4.2)

 Orientation errors from true

 Dipole  Amp (nA-m)      [X Y Z]              TRUE [X Y Z]     Degrees
------------------------------------------------------------------------
  01 -    ( 75.3)  [-0.01  0.33  0.94] vs [ 0.00  0.36  0.93] (  1.7 )
  02 -    ( 80.2)  [-0.02  0.44  0.90] vs [ 0.00  0.44  0.90] (  1.5 )
  03 -    ( 80.1)  [-0.09  0.56  0.83] vs [ 0.00  0.58  0.81] (  5.4 )
  04 -    ( 75.0)  [-0.09  0.64  0.76] vs [ 0.00  0.68  0.73] (  6.0 )
  05 -    ( 83.8)  [-0.02  0.82  0.57] vs [ 0.00  0.81  0.58] (  1.5 )
  06 -    ( 90.8)  [-0.02  0.86  0.50] vs [ 0.00  0.86  0.51] (  1.1 )
  07 -    ( 94.9)  [-0.01  0.95  0.32] vs [ 0.00  0.93  0.36] (  2.6 )
  08 -    ( 75.7)  [ 0.11  0.98  0.15] vs [ 0.00  0.97  0.23] (  7.8 )
  09 -    ( 77.2)  [ 0.33  0.04  0.94] vs [ 0.36  0.00  0.93] (  2.7 )
  10 -    ( 82.3)  [ 0.44  0.07  0.89] vs [ 0.44  0.00  0.90] (  4.3 )
  11 -    ( 83.2)  [ 0.55  0.10  0.83] vs [ 0.58  0.00  0.81] (  6.1 )
  12 -    ( 79.9)  [ 0.63  0.19  0.75] vs [ 0.68  0.00  0.73] ( 11.2 )
  13 -    ( 83.8)  [ 0.82  0.02  0.57] vs [ 0.81  0.00  0.58] (  1.7 )
  14 -    ( 76.8)  [ 0.86  0.02  0.52] vs [ 0.86  0.00  0.51] (  1.1 )
  15 -    ( 87.6)  [ 0.93  0.10  0.36] vs [ 0.93  0.00  0.36] (  5.8 )
  16 -    ( 73.0)  [ 0.98  0.11  0.15] vs [ 0.97  0.00  0.23] (  8.0 )
  17 -    ( 84.9)  [ 0.00 -0.66  0.75] vs [ 0.00 -0.69  0.72] (  2.7 )
  18 -    ( 75.9)  [-0.05 -0.57  0.82] vs [ 0.00 -0.63  0.78] (  5.1 )
  19 -    ( 79.5)  [-0.14 -0.43  0.89] vs [ 0.00 -0.49  0.87] (  9.2 )
  20 -    ( 72.1)  [-0.15 -0.24  0.96] vs [ 0.00 -0.37  0.93] ( 11.5 )
  21 -    ( 78.8)  [-0.10 -0.97  0.23] vs [ 0.00 -0.98  0.22] (  5.7 )
  22 -    ( 86.7)  [-0.08 -0.94  0.33] vs [ 0.00 -0.95  0.30] (  5.0 )
  23 -    ( 84.2)  [-0.11 -0.85  0.52] vs [ 0.00 -0.89  0.46] (  7.8 )
  24 -    ( 87.5)  [-0.19 -0.75  0.63] vs [ 0.00 -0.82  0.57] ( 12.0 )
  25 -    ( 80.5)  [-0.68  0.03  0.73] vs [-0.69  0.00  0.72] (  1.8 )
  26 -    ( 82.8)  [-0.60 -0.01  0.80] vs [-0.63  0.00  0.78] (  2.6 )
  27 -    ( 86.2)  [-0.45 -0.03  0.89] vs [-0.49  0.00  0.87] (  3.0 )
  28 -    ( 81.2)  [-0.42 -0.05  0.91] vs [-0.37  0.00  0.93] (  4.1 )
  29 -    ( 91.3)  [-0.97 -0.02  0.24] vs [-0.98  0.00  0.22] (  1.8 )
  30 -    ( 85.6)  [-0.94 -0.02  0.33] vs [-0.95  0.00  0.30] (  2.1 )
  31 -    ( 78.5)  [-0.89 -0.00  0.45] vs [-0.89  0.00  0.46] (  0.2 )
  32 -    ( 90.2)  [-0.77 -0.01  0.64] vs [-0.82  0.00  0.57] (  4.9 )

Scripting

The following script from the Brainstorm distribution reproduces the analysis presented in this tutorial page: brainstorm3/toolbox/script/tutorial_phantom_elekta.m

1 function tutorial_phantom_elekta(tutorial_dir) 2 % TUTORIAL_PHANTOM_ELEKTA: Script that runs the tests for the Elekta phantom. 3 % 4 % CORRESPONDING ONLINE TUTORIAL: 5 % https://neuroimage.usc.edu/brainstorm/Tutorials/PhantomElekta 6 % 7 % INPUTS: 8 % tutorial_dir: Directory where the sample_phantom.zip file has been unzipped 9 10 % @============================================================================= 11 % This function is part of the Brainstorm software: 12 % https://neuroimage.usc.edu/brainstorm 13 % 14 % Copyright (c) University of Southern California & McGill University 15 % This software is distributed under the terms of the GNU General Public License 16 % as published by the Free Software Foundation. Further details on the GPLv3 17 % license can be found at http://www.gnu.org/copyleft/gpl.html. 18 % 19 % FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED "AS IS," AND THE 20 % UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY 21 % WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF 22 % MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY 23 % LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE. 24 % 25 % For more information type "brainstorm license" at command prompt. 26 % =============================================================================@ 27 % 28 % Author: Ken Taylor, John C Mosher, Francois Tadel, 2016 29 30 % ===== FILES TO IMPORT ===== 31 % Does the sample folder exist 32 if ~exist(sprintf('%s',fullfile(tutorial_dir,'sample_phantom_elekta')),'dir'), 33 error(sprintf('Missing ''sample_phantom_elekta'' folder in the tutorial directory ''%s''',tutorial_dir)); 34 end 35 % Build the path of the files to import 36 FifFile{1} = fullfile(tutorial_dir, 'sample_phantom_elekta', 'kojak_all_2000nAm_pp_no_chpi_no_ms_raw.fif'); 37 FifFile{2} = fullfile(tutorial_dir, 'sample_phantom_elekta', 'kojak_all_200nAm_pp_no_chpi_no_ms_raw.fif'); 38 FifFile{3} = fullfile(tutorial_dir, 'sample_phantom_elekta', 'kojak_all_20nAm_pp_no_chpi_no_ms_raw.fif'); 39 % Select which file is processed with this script: 1=2000nAm, 2=200nAm, 3=20nAm 40 iFile = 2; 41 % Check if the folder contains the required files 42 if ~file_exist(FifFile{iFile}) 43 error(['The folder ' tutorial_dir ' does not contain the folder from the file sample_phantom_elekta.zip.']); 44 end 45 46 47 % ===== CREATE PROTOCOL ===== 48 % The protocol name has to be a valid folder name (no spaces, no weird characters...) 49 ProtocolName = 'TutorialPhantomElekta'; 50 % Start brainstorm without the GUI 51 if ~brainstorm('status') 52 brainstorm nogui 53 end 54 % Delete existing protocol 55 gui_brainstorm('DeleteProtocol', ProtocolName); 56 % Create new protocol 57 gui_brainstorm('CreateProtocol', ProtocolName, 0, 0); 58 % Start a new report 59 bst_report('Start'); 60 61 62 % ===== ANATOMY ===== 63 % Subject name 64 SubjectName = 'Kojak'; 65 % Generate the phantom anatomy 66 DipTrueFile = generate_phantom_elekta(SubjectName); 67 68 % ===== LINK CONTINUOUS FILES ===== 69 % Process: Create link to raw files 70 sFilesKojak = bst_process('CallProcess', 'process_import_data_raw', [], [], ... 71 'subjectname', SubjectName, ... 72 'datafile', {FifFile{iFile}, 'FIF'}, ... 73 'channelalign', 0); 74 75 % ===== READ EVENTS ===== 76 % Process: Read from channel 77 bst_process('CallProcess', 'process_evt_read', sFilesKojak, [], ... 78 'stimchan', 'STI201', ... 79 'trackmode', 1, ... % Value: detect the changes of channel value 80 'zero', 0); 81 % Process: Delete spurious other events unrelated to dipoles 82 bst_process('CallProcess', 'process_evt_delete', sFilesKojak, [], ... 83 'eventname', '256, 768, 1792, 3840, 4096, 6144, 7168, 7680, 7936'); 84 % Process: Rename events to have a leading zero, for proper sorting 85 for i = 1:9 86 bst_process('CallProcess', 'process_evt_rename', sFilesKojak, [], ... 87 'src', sprintf('%.0f',i), ... 88 'dest', sprintf('%02.0f',i)); 89 end 90 % Delete the first event of the first category (there is always an artifact) 91 LinkFile = file_fullpath(sFilesKojak(1).FileName); 92 LinkMat = load(LinkFile, 'F'); 93 if ~isempty(LinkMat.F.events) && ~isempty(LinkMat.F.events(1).times) 94 LinkMat.F.events(1).times(1) = []; 95 LinkMat.F.events(1).epochs(1) = []; 96 if ~isempty(LinkMat.F.events(1).channels) 97 LinkMat.F.events(1).channels(1)= []; 98 end 99 if ~isempty(LinkMat.F.events(1).notes) 100 LinkMat.F.events(1).notes(1) = []; 101 end 102 end 103 bst_save(LinkFile, LinkMat, 'v6', 1); 104 105 % ===== IMPORT EVENTS ===== 106 % Process: Import MEG/EEG: Events 107 % DC offset correction: [-100ms,-10ms] 108 % Resample: 100Hz 109 sFilesEpochs = bst_process('CallProcess', 'process_import_data_event', sFilesKojak, [], ... 110 'subjectname', SubjectName, ... 111 'condition', '', ... 112 'eventname', ['01' sprintf(',%02.0f',2:32)], ... 113 'timewindow', [], ... 114 'epochtime', [-0.1, 0.3], ... 115 'createcond', 0, ... 116 'ignoreshort', 1, ... 117 'usectfcomp', 0, ... 118 'usessp', 0, ... 119 'freq', 100, ... 120 'baseline', [-0.1, -0.001]); 121 122 % Process: Average: By trial group (folder average) 123 sAvgKojak = bst_process('CallProcess', 'process_average', sFilesEpochs, [], ... 124 'avgtype', 5, ... % By trial group (folder average) 125 'avg_func', 1, ... % Arithmetic average: mean(x) 126 'weighted', 0, ... 127 'keepevents', 0); 128 129 % ===== SOURCE ESTIMATION ===== 130 % Process: Compute covariance (noise or data) 131 bst_process('CallProcess', 'process_noisecov', sFilesEpochs, [], ... 132 'baseline', [-0.1, -0.01], ... 133 'datatimewindow', [0, 0.3], ... 134 'sensortypes', 'MEG', ... 135 'target', 1, ... % Noise covariance (covariance over baseline time window) 136 'dcoffset', 1, ... % Block by block, to avoid effects of slow shifts in data 137 'identity', 0, ... 138 'copycond', 0, ... 139 'copysubj', 0, ... 140 'replacefile', 1); % Replace 141 % Process: Compute head model 142 bst_process('CallProcess', 'process_headmodel', sAvgKojak, [], ... 143 'Comment', '', ... 144 'sourcespace', 2, ... % MRI volume 145 'meg', 3, ... % Overlapping spheres 146 'volumegrid', struct(... 147 'Method', 'isotropic', ... 148 'nLayers', 17, ... 149 'Reduction', 3, ... 150 'nVerticesInit', 4000, ... 151 'Resolution', 0.0025, ... 152 'FileName', [])); 153 % Process: Compute sources [2018] 154 sAvgSrcKojak = bst_process('CallProcess', 'process_inverse_2018', sAvgKojak, [], ... 155 'output', 1, ... % Kernel only: shared 156 'inverse', struct(... 157 'Comment', 'Dipoles: MEG GRAD', ... 158 'InverseMethod', 'gls', ... 159 'InverseMeasure', 'performance', ... 160 'SourceOrient', {{'free'}}, ... 161 'Loose', 0.2, ... 162 'UseDepth', 0, ... 163 'WeightExp', 0.5, ... 164 'WeightLimit', 10, ... 165 'NoiseMethod', 'none', ... 166 'NoiseReg', 0.1, ... 167 'SnrMethod', 'rms', ... 168 'SnrRms', 0, ... 169 'SnrFixed', 3, ... 170 'ComputeKernel', 1, ... 171 'DataTypes', {{'MEG GRAD'}})); 172 173 % ===== DIPOLE SCANNING ===== 174 % Process: Dipole scanning 175 sDipScan = bst_process('CallProcess', 'process_dipole_scanning', sAvgSrcKojak, [], ... 176 'timewindow', [0.06, 0.06], ... 177 'scouts', {}); 178 % Merge all 32 dipoles together 179 DipMergeFile = dipoles_merge({sDipScan.FileName}); 180 181 % Flip orientations 182 dip = load(DipMergeFile); 183 for i = 1:32 184 dip.Dipole(i).Amplitude = dip.Dipole(i).Amplitude * sign(dip.Dipole(i).Amplitude(3)); 185 end 186 dip.Comment = [dip.Comment ' | flipped']; 187 DipFlipFile = db_add(sDipScan(1).iStudy, dip); 188 189 % Merge with true locations 190 DipAllFile = dipoles_merge({DipTrueFile, DipFlipFile}); 191 % visualize on the MRI 3D 192 view_dipoles(DipAllFile, 'Mri3D'); 193 194 195 % ===== REPORT ===== 196 % Get the True Dipole Locations 197 TrueDipoles = load(file_fullpath(DipTrueFile)); 198 true_loc = [TrueDipoles.Dipole.Loc]; 199 true_orient = [TrueDipoles.Dipole.Amplitude]; 200 201 % Display stats 202 fprintf('\n Dipole stats\n\n') 203 fprintf(' Dipole Loc (mm) Amp (nA-m) Gof Perf Chi2 RChi2\n') 204 fprintf('--------------------------------------------------------------------------\n') 205 for i = 1:32 206 fprintf(' %02.0f - [%5.1f %5.1f %5.1f] %5.1f %5.1f%% %5.1f %5.0f (%3.0f) %.2f\n',... 207 i, dip.Dipole(i).Loc*1000, norm(dip.Dipole(i).Amplitude)*1e9, ... 208 dip.Dipole(i).Goodness*100, dip.Dipole(i).Perform, ... 209 dip.Dipole(i).Khi2, dip.Dipole(i).DOF, dip.Dipole(i).Khi2/dip.Dipole(i).DOF), 210 end 211 212 % Compare errors, but dependent on order being correct 213 fprintf('\n Location errors from true\n\n') 214 fprintf(' Dipole Loc (mm) True (mm) Diff [x y z] Norm (mm)\n') 215 fprintf('------------------------------------------------------------------------------\n') 216 for i = 1:32 217 temp_diff = dip.Dipole(i).Loc-true_loc(:,i); 218 fprintf(' %02.0f - [%5.1f %5.1f %5.1f] [%5.1f %5.1f %5.1f] [%5.1f %5.1f %5.1f] (%5.1f)\n',... 219 i, dip.Dipole(i).Loc*1000, true_loc(:,i)*1000, temp_diff*1000, norm(temp_diff)*1000); 220 end 221 222 % Orientation errors 223 fprintf('\n Orientation errors from true\n\n') 224 fprintf(' Dipole Amp (nA-m) [X Y Z] TRUE [X Y Z] Degrees\n') 225 fprintf('------------------------------------------------------------------------\n') 226 for i = 1:32 227 Amp = dip.Dipole(i).Amplitude; 228 nAmp = norm(Amp); 229 Orient = Amp / nAmp; 230 fprintf(' %02.0f - (%5.1f) [%5.2f %5.2f %5.2f] vs [%5.2f %5.2f %5.2f] (%5.1f )\n',... 231 i, nAmp*1e9, Orient, true_orient(:,i), (subspace(Orient,true_orient(:,i)))*180/pi); 232 end 233 234 % Save and display report 235 ReportFile = bst_report('Save', []); 236 bst_report('Open', ReportFile); 237 238 239 240 241 242 243 244 245 246 247





Feedback: Comments, bug reports, suggestions, questions
Email address (if you expect an answer):


  • MoinMoin Powered
  • Python Powered
  • GPL licensed
  • Valid HTML 4.01