2314
Comment:
|
13444
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
= Tutorials = == How to use those tutorials == 1. Go through all the tutorials in the section ''Getting started with Brainstorm''. In just a few hours, they will introduce you to most of the main features of the application. 1. Then read more specific tutorials, closer to your personal interests. 1. If you want a printed version of a page, click on the "print" link on the top right of the page. == Getting started with Brainstorm == |
= Brainstorm Tutorials = The following pages will take you through a typical workflow of data analyses that will feature most of the tools and applications of Brainstorm. We are updating these pages constantly, keeping up with new developments and features in the software: you are therefore welcome to [[mailto:brainstorm@sipi.usc.edu|suggest]] improvements and additions but also to contribute by becoming an editor of this wiki. Please [[mailto:brainstorm@sipi.usc.edu|email us]] if you would like to contribute. == Tutorial Guidelines == These tutorial pages suppose you are comfortable with the basic concepts of MEG and EEG source imaging. If you're not, we engage you to read some background information, which will quickly help you getting up to speed with this field: * A non-technical overview of MEG and EEG, with an emphasis on source modeling and imaging: [[http://www.canada-meg-consortium.org/EN/MegIntro|here]], * Slides from a selection of educational courses at [[http://megcommunity.org/index.php?option=com_content&view=article&id=27&Itemid=13|megcommunity.org]], * Reference books: * Peter Hansen, Morten Kringelbach, and Riitta Salmelin (Eds) [[http://www.amazon.com/MEG-Introduction-Methods-Peter-Hansen/dp/0195307232/ref=sr_1_1?ie=UTF8&qid=1324419425&sr=8-1|MEG: An Introduction to Methods]], ''Oxford University Press''; (29 July 2010); 448 pages; ISBN-13: 978-0195307238 * The following book features [[attachment:BailletMEGDraft.pdf|an extensive introduction to MEG]]: * [[http://www.amazon.com/Oxford-Handbook-Neuroscience-Library-Psychology/dp/019534216X/ref=sr_1_3?s=books&ie=UTF8&qid=1324419480&sr=1-3|The Oxford Handbook of Social Neuroscience]]'' (Oxford Library of Psychology), Oxford University Press'', (Sept 2011) Jean Decety & John T. Cacioppo (Eds), ISBN-10: 019534216X, 1128 pages. * A draft version of the MEG chapter by [[http://www.bic.mni.mcgill.ca/PeopleFaculty/BailletSylvain|Sylvain Baillet]] can be found [[attachment:BailletMEGDraft.pdf|here]]. * You can also ask us to come and organize a [[Training|training session]] at your institution, or [[http://www.bic.mni.mcgill.ca/ResearchLabsNeuroSPEED/HomePage|visit us]] to obtain training (!McGill's Montreal Neurological Institute). Now you are well equipped to go through the software tutorial, '' Enjoy! '' 1. Go through the following 12 steps to get started with Brainstorm. In just a few hours, you will be introduced to the essential features of the application. Read more tutorials (see ''Advanced Tutorials'' below), that may be more specific to your personal interests/needs. 1. If you need a printed version of a page, click on the "print" link at the top-right corner of the page. == Get started: 12 easy steps through Brainstorm == |
Line 11: | Line 33: |
* [[Tutorials/TutImportRecordings|3. Importing recordings]] | * [[Tutorials/TutImportRecordings|3. Importing MEG recordings]] |
Line 16: | Line 38: |
* [[Tutorials/TutScouts|8. Scouts: cortical regions of interest]] | * [[Tutorials/TutScouts|8. Scouts: Cortical regions of interest]] |
Line 22: | Line 44: |
=== Exploring Continuous Recordings === 1. [[Tutorials/TutRawViewer|Review raw recordings and edit markers]] 1. [[Tutorials/TutMindNeuromag|Import and process raw recordings]] |
|
Line 23: | Line 49: |
1. [[CoordinateSystems|Brainstorm coordinates systems]] 1. [[Tutorials/SegBrainVisa|Extract head and cortex surface with BrainVISA]] 1. [[Tutorials/TutRefineReg|Refine registration using head points]] |
1. [[CoordinateSystems|Brainstorm coordinate systems]] 1. [[Tutorials/SegBrainVisa|MRI segmentation with BrainVISA]] 1. [[Tutorials/SegBrainSuite|MRI segmentation with BrainSuite]] |
Line 28: | Line 56: |
=== Recordings === 1. [[Tutorials/TutRawViewer|Review raw recordings and edit markers]] 1. [[Tutorials/TutMindNeuromag|Import and process Neuromag raw recordings]] === Source estimation === 1. [[Tutorials/TutBem|BEM head model]] 1. [[Tutorials/TutInverseExpertMode|More inverse methods]] 1. [[Tutorials/TutVolSource|Volume source estimation]] 1. [[Tutorials/TutProject|Project sources on default anatomy]] 1. [[Tutorials/TutXfit|Import and visualize dipoles from Neuromag Xfit]] |
=== Source modeling === 1. [[Tutorials/TutBem|Boundary Element Modeling (BEM)]] 1. [[Tutorials/TutVolSource|Source estimation not constrained to cortical surface]] 1. [[Tutorials/TutXfit|Import and visualize dipole models from another software (Neuromag's Xfit]]) 1. [[Tutorials/TutMem|BrainEntropy MEM (Maximum Entropy on the Mean)]] |
Line 40: | Line 66: |
1. [[CiteBrainstorm|How to cite Brainstorm in your publications]] |
|
Line 41: | Line 69: |
1. [[CiteBrainstorm|How to cite Brainstorm in your publications]] | |
Line 43: | Line 71: |
1. [[Tutorials/TutUserProcess|How to write your own processes]] | |
Line 45: | Line 73: |
== Getting started (details) == * [[Tutorials/BstFolders|0. Brainstorm architecture]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/BstFolders#Brainstorm_folders|Brainstorm folders]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/BstFolders#Brainstorm_database_.28concept.29|Brainstorm database (concept)]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/BstFolders#Brainstorm_database_.28files.29|Brainstorm database (files)]] * [[Tutorials/TutFirstSteps|1. First steps]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutFirstSteps#Create_first_protocol|Create first protocol]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutFirstSteps#Fiducials_selection_.28MRI_Viewer.29|Fiducials selection (MRI Viewer)]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutFirstSteps#Protocol_exploration|Protocol exploration]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutFirstSteps#MRI_visualization|MRI visualization]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutFirstSteps#Surfaces_visualization|Surfaces visualization]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutFirstSteps#Coordinates_tab|Coordinates tab]] * [[Tutorials/TutImportAnatomy|2. Importing individual anatomy]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutImportAnatomy#Dataset_description|Dataset description]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutImportAnatomy#Import_MRI|Import MRI]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutImportAnatomy#Import_surfaces|Import surfaces]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutImportAnatomy#Downsample_and_merge_surfaces|Downsample and merge surfaces]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutImportAnatomy#Check_registration_with_MRI|Check registration with MRI]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutImportAnatomy#Fix_registration_with_MRI|Fix registration with MRI]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutImportAnatomy#What_happened_on_the_hard_drive|What happened on the hard drive]] * [[Tutorials/TutImportRecordings|3. Importing MEG recordings]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutImportRecordings#Import_recordings|Import recordings]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutImportRecordings#Channel_file|Channel file]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutImportRecordings#MEG_recordings|MEG recordings]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutImportRecordings#Managing_conditions|Managing conditions]] * [[Tutorials/TutExploreRecodings|4. Exploring the recordings]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutExploreRecodings#Display_recordings|Display recordings]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutExploreRecodings#Time_exploration|Time exploration]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutExploreRecodings#Sensors_selection|Sensors selection]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutExploreRecodings#Time_series_in_columns|Time series in columns]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutExploreRecodings#Time_selection|Time selection]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutExploreRecodings#Good_.2BAC8_bad_channels|Good / bad channels]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutExploreRecodings#Colormap_configuration|Colormap configuration]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutExploreRecodings#Toolbar_.2BAC8_Manipulating_multiple_windows|Toolbar / Manipulating multiple windows]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutExploreRecodings#Database_navigator|Database navigator]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutExploreRecodings#Snapshots|Snapshots]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutExploreRecodings#Keyboard_shortcuts|Keyboard shortcuts]] * [[Tutorials/TutHeadModel|5. Computing a head model]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutHeadModel#Forward_problem|Forward problem]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutHeadModel#Single_sphere_model|Single sphere model]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutHeadModel#Overlapping_spheres_model|Overlapping spheres model]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutHeadModel#Selection_of_a_head_model|Selection of a head model]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutHeadModel#Batching_head_model_computation|Batching head model computation]] * [[Tutorials/TutNoiseCov|6. Computing a noise covariance matrix]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutNoiseCov#Compute_from_recordings|Compute from recordings]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutNoiseCov#Noise_covariance_from_another_dataset|Noise covariance from another dataset]] * [[Tutorials/TutSourceEstimation|7. Source estimation]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutSourceEstimation#Computing_sources_for_a_single_data_file|Computing sources for a single data file]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutSourceEstimation#Sources_visualization|Sources visualization]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutSourceEstimation#Computing_sources_for_multiple_data_files|Computing sources for multiple data files]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutSourceEstimation#Minimum_norm_options|Minimum norm options]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutSourceEstimation#Project_sources_on_default_anatomy|Project sources on default anatomy]] * [[Tutorials/TutScouts|8. Scouts: Cortical regions of interest]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutScouts#Creating_a_scout|Creating a scout]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutScouts#Scout_function|Scout function]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutScouts#Multiple_scouts|Multiple scouts]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutScouts#Load.2BAC8-save_scouts|Load/save scouts]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutScouts#Display_scouts_time_series_from_the_database_tree|Display scouts time series from the database tree]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutScouts#Scout_toolbar_and_menus|Scout toolbar and menus]] * [[Tutorials/TutProcesses|9. Processes: Graphical batching interface]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutProcesses#Selecting_files_to_process|Selecting files to process]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutProcesses#Creating_a_pipeline|Creating a pipeline]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutProcesses#Another_example:_z-score_and_scouts|Another example: z-score and scouts]] * [[Tutorials/TutStat|10. Statistics]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutStat#Binary_processes|Binary processes]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutStat#Warning:_Mixing_recordings_from_different_runs|Mixing recordings from different runs]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutStat#Tests|Tests]] * [[Tutorials/TutTimefreq|11. Time-frequency]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutTimefreq#Introduction_to_complex_Morlet_wavelets|Introduction to complex Morlet wavelets]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutTimefreq#Edge_effects|Edge effects]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutTimefreq#TF:_Recordings|TF: Recordings]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutTimefreq#Description_of_the_options|Description of the options]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutTimefreq#Display_time-frequency_maps|Display time-frequency maps]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutTimefreq#Contents_of_the_.22timefreq.22_files|Contents of the "timefreq" files]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutTimefreq#Time_and_frequency_bands|Time and frequency bands]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutTimefreq#TF:_Clusters_time_series|TF: Clusters time series]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutTimefreq#TF:_Cortical_sources|TF: Cortical sources]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutTimefreq#TF:_Scouts_time_series|TF: Scouts time series]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutTimefreq#Processing_time-frequency_files|Processing time-frequency files]] |
Brainstorm Tutorials
The following pages will take you through a typical workflow of data analyses that will feature most of the tools and applications of Brainstorm. We are updating these pages constantly, keeping up with new developments and features in the software: you are therefore welcome to suggest improvements and additions but also to contribute by becoming an editor of this wiki. Please email us if you would like to contribute.
Tutorial Guidelines
These tutorial pages suppose you are comfortable with the basic concepts of MEG and EEG source imaging. If you're not, we engage you to read some background information, which will quickly help you getting up to speed with this field:
A non-technical overview of MEG and EEG, with an emphasis on source modeling and imaging: here,
Slides from a selection of educational courses at megcommunity.org,
- Reference books:
- Peter Hansen, Morten Kringelbach, and Riitta Salmelin (Eds)
MEG: An Introduction to Methods, Oxford University Press; (29 July 2010); 448 pages; ISBN-13: 978-0195307238
The following book features an extensive introduction to MEG:
The Oxford Handbook of Social Neuroscience (Oxford Library of Psychology), Oxford University Press, (Sept 2011) Jean Decety & John T. Cacioppo (Eds), ISBN-10: 019534216X, 1128 pages.
A draft version of the MEG chapter by Sylvain Baillet can be found here.
- Peter Hansen, Morten Kringelbach, and Riitta Salmelin (Eds)
You can also ask us to come and organize a training session at your institution, or visit us to obtain training (McGill's Montreal Neurological Institute).
Now you are well equipped to go through the software tutorial, Enjoy!
- Go through the following 12 steps to get started with Brainstorm. In just a few hours, you will be introduced to the essential features of the application.
Read more tutorials (see Advanced Tutorials below), that may be more specific to your personal interests/needs.
- If you need a printed version of a page, click on the "print" link at the top-right corner of the page.
Get started: 12 easy steps through Brainstorm
?0. Brainstorm architecture
?1. First steps
?2. Importing individual anatomy
?3. Importing MEG recordings
?4. Exploring the recordings
?5. Computing a head model
?6. Computing a noise covariance matrix
?7. Source estimation
?8. Scouts: Cortical regions of interest
?9. Processes: Graphical batching interface
?10. Statistics
?11. Time-frequency
Advanced tutorials
Exploring Continuous Recordings
?Review raw recordings and edit markers
Anatomy and registration
Source modeling
?Import and visualize dipole models from another software (Neuromag's Xfit)
?BrainEntropy MEM (Maximum Entropy on the Mean)
Other useful how-to's
Getting started (details)
?0. Brainstorm architecture
?1. First steps
?2. Importing individual anatomy
?3. Importing MEG recordings
?4. Exploring the recordings
?5. Computing a head model
?6. Computing a noise covariance matrix
?7. Source estimation
?8. Scouts: Cortical regions of interest
?9. Processes: Graphical batching interface
?10. Statistics
?11. Time-frequency