3304
Comment:
|
5405
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
= Tutorials = == How to use those tutorials == 1. Go through all the tutorials in the section ''Getting started with Brainstorm''. In just a few hours, they will introduce you to most of the main features of the application. 1. Then read more specific tutorials, closer to your personal interests. 1. If you want a printed version of a page, click on the "print" link on the top right of the page. |
= Brainstorm Tutorials = The following pages will take you through a typical workflow of data analyses that will feature most of the tools and applications of Brainstorm. We are updating these pages constantly, keeping up with new developments and features in the software. You are therefore welcome to suggest improvements and additions but also to contribute by becoming an editor of this wiki. Please [[mailto:brainstorm@sipi.usc.edu|email us]] if you would like to contribute. |
Line 7: | Line 4: |
== Getting started with Brainstorm == * [[Tutorials/BstFolders|0. Brainstorm architecture]] |
== Required background == These tutorial pages suppose you are comfortable with the basic concepts of MEG and EEG source imaging. If you're not, we engage you to read some background information, which will quickly help you getting up to speed with this field: |
Line 10: | Line 7: |
. [[http://neuroimage.usc.edu/brainstorm/Tutorials/BstFolders#Brainstorm_folders|Brainstorm folders]] | * A non-technical overview of MEG and EEG, with an emphasis on source modeling:<<BR>> [[http://www.canada-meg-consortium.org/EN/MegIntro|Canada MEG Consortium]] |
Line 12: | Line 9: |
. [[http://neuroimage.usc.edu/brainstorm/Tutorials/BstFolders#Brainstorm_database_.28concept.29|Brainstorm database (concept)]] | * Slides from a selection of educational courses:<<BR>>[[http://megcommunity.org/index.php?option=com_content&view=article&id=27&Itemid=13|megcommunity.org]] |
Line 14: | Line 11: |
. [[http://neuroimage.usc.edu/brainstorm/Tutorials/BstFolders#Brainstorm_database_.28files.29|Brainstorm database (files)]] | * Reference books: |
Line 16: | Line 13: |
* [[http://www.amazon.com/MEG-Introduction-Methods-Peter-Hansen/dp/0195307232/ref=sr_1_1?ie=UTF8&qid=1324419425&sr=8-1|MEG: An Introduction to Methods]]<<BR>>Editors: P Hansen, M Kringelbach, R Salmelin, ''Oxford University Press'', 2010, 448 pages | |
Line 17: | Line 15: |
* [[Tutorials/TutFirstSteps|1. First steps]] 1. Starting Brainstorm for the first time |
* [[http://www.amazon.com/Oxford-Handbook-Neuroscience-Library-Psychology/dp/019534216X/ref=sr_1_3?s=books&ie=UTF8&qid=1324419480&sr=1-3|The Oxford Handbook of Social Neuroscience]]<<BR>>Editors: J Decety, JT Cacioppo, ''Oxford University Press'', 2011, 1128 pages<<BR>>A draft version of the MEG chapter by Sylvain Baillet can be found [[attachment:BailletMEGDraft.pdf|here]]. '' '' |
Line 20: | Line 17: |
1. Main interface window | * You can also ask us to come and organize a [[Training|training session]] at your institution, or [[http://www.bic.mni.mcgill.ca/ResearchLabsNeuroSPEED/HomePage|visit us]] to obtain training (!McGill's Montreal Neurological Institute). |
Line 22: | Line 19: |
1. Create first protocol | Now you are well equipped to go through the software tutorial, '' Enjoy! '' |
Line 24: | Line 21: |
1. Fiducials selection (MRI Viewer) | == Get started == The easiest way to get started with Brainstorm is to follow carefully those 12+3 introduction tutorials. In just a few hours, you will be introduced to the essential features of the application. |
Line 26: | Line 24: |
1. Protocol exploration | You will find a report form at the end of each tutorial, please share your comments to help us improve the documentation and the software. |
Line 28: | Line 26: |
1. MRI visualization | If you need a printed version of a page, click on the "print" link at the top-right corner of the page. However, note that those pages are updated with the software, and cannot be kept as long term reference documentation. |
Line 30: | Line 28: |
1. Surfaces visualization | === 12 easy steps through Brainstorm === 1. [[Tutorials/BstFolders|Brainstorm architecture]] ''[10 min] '' 1. [[Tutorials/TutFirstSteps|First steps]] ''[30 min]'' 1. [[Tutorials/TutImportAnatomy|Importing individual anatomy]] ''[30 min]'' 1. [[Tutorials/TutImportRecordings|Importing MEG recordings]] ''[30 min]'' 1. [[Tutorials/TutExploreRecodings|Exploring the recordings]] ''[60 min]'' 1. [[Tutorials/TutHeadModel|Head model]] ''[30 min]'' 1. [[Tutorials/TutNoiseCov|Noise covariance]] ''[30 min]'' 1. [[Tutorials/TutSourceEstimation|Source estimation]] ''[45 min]'' 1. [[Tutorials/TutScouts|Scouts]] ''[45 min]'' 1. [[Tutorials/TutProcesses|Graphical scripting]] ''[45 min]'' 1. [[Tutorials/TutStat|Statistics]] ''[30 min]'' 1. [[Tutorials/TutTimefreq|Time-frequency]] ''[1:30 hr''] |
Line 32: | Line 42: |
1. Coordinates tab * [[Tutorials/TutImportAnatomy|2. Importing individual anatomy]] 1. Dataset description 1. Create protocol 1. Import MRI 1. Import surfaces 1. Downsample and merge surfaces 1. Check registration with MRI 1. Fix registration with MRI 1. What happened on the hard drive * [[Tutorials/TutImportRecordings|3. Importing recordings]] * [[Tutorials/TutExploreRecodings|4. Exploring the recordings]] * [[Tutorials/TutHeadModel|5. Computing a head model]] * [[Tutorials/TutNoiseCov|6. Computing a noise covariance matrix]] * [[Tutorials/TutSourceEstimation|7. Source estimation]] * [[Tutorials/TutScouts|8. Scouts: Cortical regions of interest]] * [[Tutorials/TutProcesses|9. Processes: Graphical batching interface]] * [[Tutorials/TutStat|10. Statistics]] * [[Tutorials/TutTimefreq|11. Time-frequency]] |
=== Processing continuous recordings === 1. [[Tutorials/TutRawViewer|Review continuous recordings and edit markers]] ''[2:00 hr]'' 1. [[Tutorials/TutRawSsp|Detect and remove artifacts]] ''[2:00 hr]'' 1. [[Tutorials/TutRawAvg|Epoching and averaging]] ''[1:30 hr]'' |
Line 55: | Line 50: |
1. [[Tutorials/SegBrainVisa|MRI segmentation with BrainVISA]] 1. [[Tutorials/SegBrainVisa|MRI segmentation]][[Tutorials/SegBrainVisa|with BrainSuite]] 1. [[Tutorials/SegBrainVisa|MRI segmentation]][[Tutorials/SegBrainVisa|with FreeSurfer]] 1. [[Tutorials/TutRefineReg|Refine registration using head points]] |
1. [[Tutorials/LabelFreeSurfer|MRI segmentation: FreeSurfer]] 1. [[Tutorials/SegBrainVisa|MRI segmentation: BrainVISA]] 1. [[Tutorials/SegBrainSuite|MRI segmentation: BrainSuite]] |
Line 61: | Line 56: |
=== Recordings === 1. [[Tutorials/TutRawViewer|Review raw recordings and edit markers]] 1. [[Tutorials/TutMindNeuromag|Neuromag raw recordings]] |
1. [[Tutorials/TutDigitize|Digitize EEG electrodes and head shape]] 1. [[Tutorials/TutRealtime|Realtime head positioning in the CTF MEG system]] |
Line 65: | Line 59: |
=== Source estimation === 1. [[Tutorials/TutBem|BEM head model]] 1. [[Tutorials/TutVolSource|Volume source estimation]] 1. [[Tutorials/TutProject|Project sources on default anatomy]] 1. [[Tutorials/TutXfit|Import and visualize dipoles from Neuromag Xfit]] 1. [[Tutorials/TutClusters|Clusters of sensors]] |
=== Graphical scripting === 1. [[Tutorials/RefProcesses|Description of all the processes]] 1. [[Tutorials/TutRawScript|Full analysis with one script]] 1. [[RefWriteProcess|How to write your own process]] === Source modeling === 1. [[Tutorials/TutBem|BEM with OpenMEEG]] 1. [[Tutorials/TutVolSource|Volumetric source estimation]] 1. [[Tutorials/TutXfit|Dipole models from Neuromag's Xfit and CTF's DipoleFit]] === Other types of recordings === 1. [[Tutorials/TutMindNeuromag|Neuromag raw recordings]] [Not up to date] |
Line 73: | Line 75: |
1. [[Tutorials/TutScript|How to use Brainstorm without the GUI]] | |
Line 75: | Line 76: |
1. [[Tutorials/TutCompile|How to compile Brainstorm]] 1. [[Tutorials/TutUserProcess|How to write your own processes]] |
1. [[CoordinateSystems|Coordinate systems]] |
Line 78: | Line 79: |
=== Examples === 1. This video illustrates how Brainstorm can be used for studying amygdala activity:<<BR>>[[http://www.jove.com/video/50212/how-to-detect-amygdala-activity-with-magnetoencephalography-using?status=a52218k|How to Detect Amygdala Activity with Magnetoencephalography using Source Imaging]] <<BR>>Authors: Balderston NL, Schultz DH, Baillet S, Helmstetter FJ |
Brainstorm Tutorials
The following pages will take you through a typical workflow of data analyses that will feature most of the tools and applications of Brainstorm. We are updating these pages constantly, keeping up with new developments and features in the software. You are therefore welcome to suggest improvements and additions but also to contribute by becoming an editor of this wiki. Please email us if you would like to contribute.
Required background
These tutorial pages suppose you are comfortable with the basic concepts of MEG and EEG source imaging. If you're not, we engage you to read some background information, which will quickly help you getting up to speed with this field:
A non-technical overview of MEG and EEG, with an emphasis on source modeling:
Canada MEG ConsortiumSlides from a selection of educational courses:
megcommunity.org- Reference books:
MEG: An Introduction to Methods
Editors: P Hansen, M Kringelbach, R Salmelin, Oxford University Press, 2010, 448 pagesThe Oxford Handbook of Social Neuroscience
Editors: J Decety, JT Cacioppo, Oxford University Press, 2011, 1128 pages
A draft version of the MEG chapter by Sylvain Baillet can be found here.
You can also ask us to come and organize a training session at your institution, or visit us to obtain training (McGill's Montreal Neurological Institute).
Now you are well equipped to go through the software tutorial, Enjoy!
Get started
The easiest way to get started with Brainstorm is to follow carefully those 12+3 introduction tutorials. In just a few hours, you will be introduced to the essential features of the application.
You will find a report form at the end of each tutorial, please share your comments to help us improve the documentation and the software.
If you need a printed version of a page, click on the "print" link at the top-right corner of the page. However, note that those pages are updated with the software, and cannot be kept as long term reference documentation.
12 easy steps through Brainstorm
?Brainstorm architecture [10 min]
?First steps [30 min]
?Importing individual anatomy [30 min]
?Importing MEG recordings [30 min]
?Exploring the recordings [60 min]
?Head model [30 min]
?Noise covariance [30 min]
?Source estimation [45 min]
?Scouts [45 min]
?Graphical scripting [45 min]
?Statistics [30 min]
?Time-frequency [1:30 hr]
Processing continuous recordings
?Review continuous recordings and edit markers [2:00 hr]
?Detect and remove artifacts [2:00 hr]
?Epoching and averaging [1:30 hr]
Advanced tutorials
Anatomy and registration
Graphical scripting
Source modeling
?Dipole models from Neuromag's Xfit and CTF's DipoleFit
Other types of recordings
Neuromag raw recordings [Not up to date]
Other useful how-to's
Examples
This video illustrates how Brainstorm can be used for studying amygdala activity:
How to Detect Amygdala Activity with Magnetoencephalography using Source Imaging
Authors: Balderston NL, Schultz DH, Baillet S, Helmstetter FJ