15926
Comment:
|
20926
|
Deletions are marked like this. | Additions are marked like this. |
Line 4: | Line 4: |
<<HTML(<!-- div style="margin-top: -10px; padding: 0px; border: 0px solid #999; float: right; clear: right;"><A href="http://neuroimage.usc.edu/brainstorm/Jobs">)>> {{attachment:hiring.jpg||width="115",height="77"}} <<HTML(</A></div -->)>> | <<HTML(<div style="margin-top: -10px; padding: 0px; border: 0px solid #999; float: right; clear: right;"> <A href="http://neuroimage.usc.edu/brainstorm/Jobs">)>> <<HTML(</A></div>)>> . . . . |
Line 8: | Line 15: |
<<HTML(<div style="float: right;"><a class="github-button" href="https://github.com/brainstorm-tools/brainstorm3" data-style="mega" data-count-href="/brainstorm-tools/brainstorm3/stargazers" data-count-api="/repos/brainstorm-tools/brainstorm3#stargazers_count" data-count-aria-label="# stargazers on GitHub" aria-label="Star brainstorm-tools/brainstorm3 on GitHub">Star</a></div)>> <<HTML(<div id="fb-root"></div> <script>(function(d, s, id) {var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) return; js = d.createElement(s); js.id = id;js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.5"; fjs.parentNode.insertBefore(js, fjs);}(document, 'script', 'facebook-jssdk'));</script>)>> <<HTML(<div style="float: right; clear: right; margin-top: 10px;" class="fb-like" data-href="http://www.facebook.com/BrainstormSoftware" data-layout="button_count" data-action="like" data-show-faces="true" data-share="false"></div>)>> |
<<HTML(<div style="float: left;margin-right: 10px;"><a href="https://neuroimage.usc.edu/brainstorm/Jobs"><img alt="hiring.jpg" class="attachment" height="77" src="/brainstorm/Introduction?action=AttachFile&do=get&target=hiring.jpg" title="hiring.jpg" width="120"></a></div)>> <<HTML(<div style="float: right; clear: right; margin-top: 5px; margin-right:-3px;"><a class="github-button" href="https://github.com/brainstorm-tools/brainstorm3" data-style="mega" data-count-href="/brainstorm-tools/brainstorm3/stargazers" data-count-api="/repos/brainstorm-tools/brainstorm3#stargazers_count" data-count-aria-label="# stargazers on GitHub" aria-label="Star brainstorm-tools/brainstorm3 on GitHub">Star</a></div)>> <<HTML(<div id="fb-root"></div><script async defer crossorigin="anonymous" src="https://connect.facebook.net/en_US/sdk.js#xfbml=1&version=v18.0" nonce="JgAfk5ol"></script>)>> <<HTML(<div onclick="location.href='https://www.facebook.com/BrainstormSoftware';" style="position: relative; float: right; clear: right; margin-top: 5px; margin-right:-3px; cursor: pointer;"><div class="fb-like" data-href="http://www.facebook.com/BrainstormSoftware" data-layout="button_count" data-action="like" data-show-faces="true" data-share="false"></div><div style="position: absolute; top:0; left:0;width: 100%;height: 100%;"><p> </p></div></div>)>> <<HTML(<script async defer src="https://platform.twitter.com/widgets.js"></script>)>> <<HTML(<div style="float: right; clear: right;"><a href="https://twitter.com/brainstorm2day?ref_src=twsrc%5Etfw" class="twitter-follow-button" data-show-count="false">Follow @brainstorm2day</a></div>)>> <<HTML(<script src="https://apis.google.com/js/platform.js"></script>)>> <<HTML(<div style="float: right; clear: right;"><div class="g-ytsubscribe" data-channelid="UCPXmMBgSZCRgfKBDtHKb77Q" data-layout="default" data-count="default"></div></div>)>> |
Line 18: | Line 35: |
* '''New courses''': Montreal/Quebec (May), Cambridge (June) - [[Training|Register]] |
|
Line 22: | Line 37: |
* '''Software updates''': [[News|What's new]] | Follow us on [[http://www.facebook.com/BrainstormSoftware|Facebook]] and [[https://github.com/brainstorm-tools/brainstorm3|GitHub]] | * '''Next courses''': . Los Angeles, California (USA): '''Dec 5, 2024''' [[https://neuroimage.usc.edu/brainstorm/WorkshopLA2024|Program]] . Breckenridge, Colorado(USA): '''March 3, 2025''' [[https://neuroimage.usc.edu/brainstorm/WorkshopBreckenridge2025|Program]] * '''Problems with automatic updates''': Solutions [[https://github.com/brainstorm-tools/brainstorm3/issues/308#issuecomment-646026943|#1]] and [[https://neuroimage.usc.edu/forums/t/undefined-function-icon-y-up-iconloader/35737|#2]] * '''Software updates''': [[News]] | [[http://www.facebook.com/BrainstormSoftware|Facebook]] | [[https://twitter.com/brainstorm2day|Twitter]] | [[https://github.com/brainstorm-tools/brainstorm3|GitHub]] | [[https://www.linkedin.com/company/brainstorm-neuroimage|Linkedin]] |
Line 27: | Line 49: |
Brainstorm is a collaborative, open-source application dedicated to the analysis of brain recordings: <<BR>>MEG, EEG, fNIRS, ECoG, depth electrodes and animal electrophysiology. Our objective is to share a comprehensive set of user-friendly tools with the scientific community using MEG/EEG as an experimental technique. For physicians and researchers, the main advantage of Brainstorm is its rich and intuitive graphic interface, which does not require any programming knowledge. We are also putting the emphasis on practical aspects of data analysis (e.g., with scripting for batch analysis and intuitive design of analysis pipelines) to promote reproducibility and productivity in MEG/EEG research. Finally, although Brainstorm is developed with Matlab (and Java), it does not require users to own a Matlab license: an executable, platform-independent (Windows, MacOS, Linux) version is made available in the downloadable package. To get an overview of the interface, you can watch this [[http://neuroimage.usc.edu/brainstorm/Screenshots|introduction video]]. Since the project started by the end of the 1990's, our server has registered more than 20,000 accounts. See our [[Pub|reference page]] for a list of published studies featuring Brainstorm at work. The best way to learn how to use Brainstorm, like any other academic software, is to benefit from local experts. However, you may be the first one in your institution to consider using Brainstorm for your research. We are happy to provide comprehensive [[Tutorials|online tutorials]] and support through our forum but there is nothing better than a course to make your learning curve steeper. Consult our [[Training|training pages]] for upcoming opportunities to learn better and faster. Finally, have a look regularly at our [[News|What's new]] page for staying on top of Brainstorm news and updates and <<HTML(<A href="https://www.facebook.com/brainstormsoftware">)>> ''' {{attachment:facebook_like.png|http://www.facebook.com/brainstormsoftware}} '''Like us on Facebook<<HTML(</A>)>> to stay in touch. We hope you enjoy using Brainstorm as much as we enjoy developing and sharing these tools with the community! |
Brainstorm is a collaborative, open-source application dedicated to the analysis of brain recordings: <<BR>>MEG, EEG, fNIRS, ECoG, depth electrodes and multiunit electrophysiology. The application is free; a Matlab license is not required to use it. Our objective is to share a comprehensive set of user-friendly tools with the scientific community using MEG/EEG as an experimental technique. For clinician-scientists and researchers, the main advantage of Brainstorm is its easy and intuitive graphic interface, which does not require any programming knowledge. We are also putting the emphasis on practical aspects of data analysis (e.g., with scripting for batch analysis and intuitive design of analysis pipelines) to promote reproducibility and productivity in MEG/EEG research. Finally, although Brainstorm is developed with Matlab (and Java), it does not require users to own a Matlab license: an executable, platform-independent (Windows, MacOS, Linux) version is made available in the downloadable package. To get an overview of the interface, you can watch this [[http://neuroimage.usc.edu/brainstorm/Screenshots|introduction video]]. Since the project started by the end of the 1990's, our server has registered [[Community|over 46,000 users]], contributing [[Pub|thousands of scientific publications]]. We also provide comprehensive documentation via [[Tutorials|online tutorials]] and data, and active user support through [[https://neuroimage.usc.edu/forums/|an online forum]]. We also deliver in-person and online courses; please consult our [[Training|training pages]] for upcoming opportunities to learn to use Brainstorm better and faster. If you wish to host a training session at your institution, [[mailto:BRAINSTORM-L@MAILLIST.USC.EDU|please let us know]]. Finally, the [[News|What's new]] page relays Brainstorm's latest news and updates and <<HTML(<A href="https://www.facebook.com/brainstormsoftware">)>> ''' {{attachment:facebook_like.png|http://www.facebook.com/brainstormsoftware}} '''Like us on Facebook<<HTML(</A>)>> to stay in touch. We hope you enjoy using Brainstorm as much as we enjoy developing and sharing these tools with the community! |
Line 43: | Line 65: |
. ''' {{attachment:brainstorm_banner.gif||width="586px",height="209px"}} ''' | . ''' {{attachment:brainstorm_banner.gif||height="209px",width="586px"}} ''' |
Line 48: | Line 70: |
This software was generated primarily with support from the National Institutes of Health under grants 2R01-EB009048, R01-EB009048, R01-EB002010 and R01-EB000473. Primary support was provided by the Centre National de la Recherche Scientifique (CNRS, France) for the Cognitive Neuroscience & Brain Imaging Laboratory (La Salpetriere Hospital and Pierre & Marie Curie University, Paris, France), and by the Montreal Neurological Institute to the MEG Program at''' McGill '''University. Additional support was also from two grants from the French National Research Agency (ANR) to the Cognitive Neuroscience Unit (PI: Ghislaine Dehaene; Inserm/CEA, Neurospin, France) and to the ViMAGINE project (PI: Sylvain Baillet; ANR-08-BLAN-0250), and by the Epilepsy Center in the Cleveland Clinic Neurological Institute. |
This software was generated primarily with support from the National Institutes of Health under grants R01-EB026299, 2R01-EB009048, R01-EB009048, R01-EB002010 and R01-EB000473. Early support was also provided by the Centre National de la Recherche Scientifique (CNRS, France) for the Cognitive Neuroscience & Brain Imaging Laboratory (La Salpetriere Hospital and Pierre & Marie Curie University, Paris, France), and by the Montreal Neurological Institute to [[https://www.mcgill.ca/bic/meg-unit|the MEG Program at McGill University]]. Additional support was provided from two grants from the French National Research Agency (ANR) to the Cognitive Neuroscience Unit (PI: Ghislaine Dehaene; Inserm/CEA, Neurospin, France) and to the ViMAGINE project (PI: Sylvain Baillet; ANR-08-BLAN-0250), and by the Epilepsy Center in the Cleveland Clinic Neurological Institute. |
Line 55: | Line 77: |
Please cite the following reference in your publications if you have used our software for your data analyses:''' [[CiteBrainstorm|How to cite Brainstorm]].''' It is also good offline reading to get an overview of the main features of the application. | Please cite the following open-access reference in your publications if you have used our software for data analyses:''' [[CiteBrainstorm|How to cite Brainstorm]].''' It is also good offline reading to get an overview of the main features of the application. |
Line 60: | Line 82: |
'''MEG/EEG recordings:''' | '''MEG/EEG recordings''' |
Line 63: | Line 85: |
* Support for multiple modalities: [[Tutorials/Auditory|MEG]], [[http://neuroimage.usc.edu/brainstorm/Tutorials/Epilepsy|EEG]], [[http://neuroimage.usc.edu/brainstorm/News#February_2015|sEEG]], [[http://neuroimage.usc.edu/brainstorm/News#February_2015|ECoG]], [[http://neuroimage.usc.edu/brainstorm/News#June_2015|animal LFP]], [[Tutorials/NIRSFingerTapping|NIRS]] | * Support for multiple modalities | [[Tutorials/Auditory|MEG]], [[http://neuroimage.usc.edu/brainstorm/Tutorials/Epilepsy|EEG]], [[https://neuroimage.usc.edu/brainstorm/Tutorials/Epileptogenicity|sEEG]], [[https://neuroimage.usc.edu/brainstorm/Tutorials/ECoG|ECoG]], [[Tutorials/NIRSFingerTapping|NIRS]], [[https://neuroimage.usc.edu/brainstorm/e-phys/Introduction|electrophysiology]] |
Line 79: | Line 101: |
'''Powerful and versatile visualization: ''' | '''Powerful and versatile visualization ''' |
Line 87: | Line 109: |
'''MRI visualization and coregistration: ''' * Generate surfaces from MRI volume: head, inner skull and outer skull | [[Tutorials/TutBem|link]] * Use individual or template anatomy (MNI / Colin27 or ICBM152 brain) | [[Tutorials/DefaultAnatomy|link]] * Template anatomy can be warped to individual head surface | [[Tutorials/TutWarping|link]] * Import MRI volumes and tessellated surface envelopes | [[Tutorials/ImportAnatomy|link]] |
'''MRI visualization and coregistration ''' * Import individual MRI volumes and surfaces | [[Tutorials/ImportAnatomy|link]], [[https://neuroimage.usc.edu/brainstorm/Tutorials/LabelFreeSurfer|FreeSurfer]], [[https://neuroimage.usc.edu/brainstorm/Tutorials/SegBrainSuite|BrainSuite]], [[https://neuroimage.usc.edu/brainstorm/Tutorials/SegBrainVisa|BrainVISA]], [[https://neuroimage.usc.edu/brainstorm/Tutorials/SegCAT12|CAT]], [[https://neuroimage.usc.edu/brainstorm/Tutorials/SegCIVET|CIVET]] * Deface MRI images | [[https://neuroimage.usc.edu/brainstorm/News#March_2019|link]] * Normalize MRI to MNI space | [[https://neuroimage.usc.edu/brainstorm/CoordinateSystems#MNI_coordinates|link]] * Use anatomy templates | [[Tutorials/DefaultAnatomy|link]] * Warp templates to individual head surface | [[Tutorials/TutWarping|link]] * Generate surfaces from MRI volume | [[https://neuroimage.usc.edu/brainstorm/Tutorials/ExploreAnatomy#Anatomy_folder|head]], [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutBem|skull]], [[https://neuroimage.usc.edu/brainstorm/Tutorials/Epileptogenicity#Generate_default_surfaces|cortex]] |
Line 103: | Line 127: |
'''Graphical batching tools''': | '''Graphical batching tools''' |
Line 109: | Line 133: |
'''Head modeling: ''' | '''Head modeling ''' |
Line 112: | Line 136: |
* EEG: Berg's three-layer sphere, Boundary Element Models (with [[Tutorials/TutBem|OpenMEEG]]) * sEEG/ECoG: Boundary Element Models (with OpenMEEG) |
* EEG: Berg's three-layer sphere, Boundary Element Models (with [[Tutorials/TutBem|OpenMEEG]]) and the Finite Element Models (with [[https://neuroimage.usc.edu/brainstorm/https://neuroimage.usc.edu/brainstorm/Tutorials/Duneuro|DUNEuro]]) * sEEG/ECoG: Boundary Element Models (with OpenMEEG) and the Finite Element Models (with [[https://neuroimage.usc.edu/brainstorm/https://neuroimage.usc.edu/brainstorm/Tutorials/Duneuro|DUNEuro]]) |
Line 116: | Line 142: |
'''Source modeling: ''' | '''Source modeling ''' |
Line 120: | Line 146: |
* Normalizations: dSPM, sLORETA, Z-score | [[http://neuroimage.usc.edu/brainstorm/Tutorials/SourceEstimation#Source_map_normalization|link]] | * Normalizations: dSPM, sLORETA, Z-score | [[https://neuroimage.usc.edu/brainstorm/Tutorials/SourceEstimation#Standardization_of_source_maps|link]] |
Line 122: | Line 148: |
* Source estimation on [[https://neuroimage.usc.edu/brainstorm/Tutorials/SourceEstimation#Display:_Cortex_surface|cortical surface]], [[https://neuroimage.usc.edu/brainstorm/Tutorials/TutVolSource|MRI volume]] or [[http://neuroimage.usc.edu/brainstorm/Tutorials/DeepAtlas|sub-cortical atlases]] | |
Line 127: | Line 154: |
'''Source display and analysis: ''' | '''Source display and analysis ''' |
Line 136: | Line 163: |
'''Time-frequency decompositions: ''' | '''Time-frequency decompositions ''' |
Line 142: | Line 169: |
'''Functional connectivity''': * Correlation, coherence, Granger causality, phase-locking value * Phase-amplitude coupling estimation |
'''Functional connectivity''' * Correlation, coherence, Granger causality, phase-locking value | [[https://neuroimage.usc.edu/brainstorm/Tutorials/Connectivity|link]] * Phase-amplitude coupling estimation | [[https://neuroimage.usc.edu/brainstorm/Tutorials/TutPac|link]] |
Line 148: | Line 175: |
'''Group analysis: ''' |
* Representation of functional connectivity on anatomical fibers | [[https://neuroimage.usc.edu/brainstorm/Tutorials/FiberConnectivity|link]] '''Machine learning''' * Decoding / Multivariate pattern analysis with SVM or LDA | [[https://neuroimage.usc.edu/brainstorm/Tutorials/Decoding|link]] '''Group analysis ''' |
Line 153: | Line 185: |
* Standard group analysis pipeline | [[Tutorials/VisualSingle|single subject]] | [[Tutorials/VisualGroup|group]] | * Standard group analysis pipeline | [[Tutorials/VisualSingle|single subject,]] [[Tutorials/VisualGroup|group]], [[https://neuroimage.usc.edu/brainstorm/Tutorials/Workflows|roadmaps]] |
Line 156: | Line 188: |
'''Documentation and support: ''' | '''Documentation and support ''' |
Line 168: | Line 200: |
* ANT EEProbe continuous (.cnt) | * ADInstruments LabChart (.adicht) |
Line 170: | Line 202: |
* ANT EEProbe (.cnt, .avr) * Axion AxIS (.raw) * BCI2000 (.dat) |
|
Line 172: | Line 207: |
* BIDS-formatted datasets * BIOPAC AcqKnowledge (.acq) |
|
Line 176: | Line 213: |
* CED Spike2 (.smr) | * CED Spike2 (.smr, .smrx, .son) |
Line 185: | Line 222: |
* EGI-Philips (.mff) * EmotivPRO (.edf) |
|
Line 187: | Line 226: |
* Intan (.rhd, .rhs) | |
Line 188: | Line 228: |
* Matlab matrix (.mat) | |
Line 192: | Line 233: |
* Neurodata Without Borders (.nwb) * Neuroelectrics (.easy, .nedf) * NeurOne (.bin) |
|
Line 193: | Line 237: |
* NeuroScope (.eeg;.dat) | * NeuroScope (.eeg, .dat) |
Line 196: | Line 240: |
* Open Ephys flat binary (*.dat) * Plexon (.plx, .pl2) |
|
Line 197: | Line 243: |
* The Virtual Brain (.h5) * Tucker Davis Technologies (.tdt) * Wearable Sensing (.csv) |
|
Line 198: | Line 247: |
'''Data structures of similar applications''' * EEGLAB * FieldTrip * MNE-Python * SPM12 |
|
Line 203: | Line 259: |
'''Surface atlases''' * BrainSuite (.dfs) * FreeSurfer (.annot, .label) * Gifti texture (.gii) * SUMA atlas (.dset) |
|
Line 213: | Line 276: |
* Yokogawa / KIT | * Ricoh MEG (.sqd, .con, .raw, .ave) * Yokogawa / KIT (.sqd, .con, .raw, .ave) * York Instruments MEGSCAN (.meghdf5) |
Line 216: | Line 281: |
'''fNIRS''' * Brainsight NIRS (.nirs) * SNIRF (.snirf) |
|
Line 218: | Line 288: |
* Brainsight NIRS (.nirs) | |
Line 220: | Line 289: |
* Tobii Pro Glasses (.tsv) | |
Line 233: | Line 303: |
* Localite (.csv) | |
Line 235: | Line 306: |
* SimNIBS (.csv) | |
Line 236: | Line 308: |
<<HTML(</TD></TR><TR><TD>)>> |
|
Line 244: | Line 314: |
* DICOM (using SPM converter) | |
Line 249: | Line 320: |
'''Surface atlases''' * BrainSuite (.dfs) * FreeSurfer (.annot, .label) * Gifti texture (.gii) * SUMA atlas (.dset) <<HTML(</TD><TD>)>> |
|
Line 260: | Line 322: |
* ASCII (.tri) | |
Line 267: | Line 330: |
* ASCII (.tri) | |
Line 269: | Line 331: |
* SimNIBS/Gmsh (.msh) | |
Line 272: | Line 335: |
== Development, release and distribution == Brainstorm follows a '''continuous development and release model'''. Brainstorm is updated on a rolling basis to ensure that users have access to the latest features, improvements and bug fixes as soon as they are ready. These updates are regularly published on the [[https://github.com/brainstorm-tools/brainstorm3|Brainstorm GitHub repository]], and the version in the [[https://neuroimage.usc.edu/bst/download.php|download page]] are updated everyday. Updates can be obtained: * '''Automatically''': at the Brainstorm startup, the user gets notified for updates and can download a new version is necessary. * '''Manually''': this is be started within the GUI with the menu '''Update > Update Brainstorm''' * '''GitHub''': for users and developers experienced in git and GitHub, latest Brainstorm source code can be retrieved from the Brainstorm GitHub repository. |
News
Next courses:
Los Angeles, California (USA): Dec 5, 2024 Program
Breckenridge, Colorado(USA): March 3, 2025 Program
Software updates: News | Facebook | Twitter | GitHub | Linkedin
Introduction
Brainstorm is a collaborative, open-source application dedicated to the analysis of brain recordings:
MEG, EEG, fNIRS, ECoG, depth electrodes and multiunit electrophysiology. The application is free; a Matlab license is not required to use it.
Our objective is to share a comprehensive set of user-friendly tools with the scientific community using MEG/EEG as an experimental technique. For clinician-scientists and researchers, the main advantage of Brainstorm is its easy and intuitive graphic interface, which does not require any programming knowledge. We are also putting the emphasis on practical aspects of data analysis (e.g., with scripting for batch analysis and intuitive design of analysis pipelines) to promote reproducibility and productivity in MEG/EEG research. Finally, although Brainstorm is developed with Matlab (and Java), it does not require users to own a Matlab license: an executable, platform-independent (Windows, MacOS, Linux) version is made available in the downloadable package. To get an overview of the interface, you can watch this introduction video.
Since the project started by the end of the 1990's, our server has registered over 46,000 users, contributing thousands of scientific publications.
We also provide comprehensive documentation via online tutorials and data, and active user support through an online forum. We also deliver in-person and online courses; please consult our training pages for upcoming opportunities to learn to use Brainstorm better and faster. If you wish to host a training session at your institution, please let us know.
Finally, the What's new page relays Brainstorm's latest news and updates and Like us on Facebook to stay in touch. We hope you enjoy using Brainstorm as much as we enjoy developing and sharing these tools with the community!
Support
This software was generated primarily with support from the National Institutes of Health under grants R01-EB026299, 2R01-EB009048, R01-EB009048, R01-EB002010 and R01-EB000473.
Early support was also provided by the Centre National de la Recherche Scientifique (CNRS, France) for the Cognitive Neuroscience & Brain Imaging Laboratory (La Salpetriere Hospital and Pierre & Marie Curie University, Paris, France), and by the Montreal Neurological Institute to the MEG Program at McGill University.
Additional support was provided from two grants from the French National Research Agency (ANR) to the Cognitive Neuroscience Unit (PI: Ghislaine Dehaene; Inserm/CEA, Neurospin, France) and to the ViMAGINE project (PI: Sylvain Baillet; ANR-08-BLAN-0250), and by the Epilepsy Center in the Cleveland Clinic Neurological Institute.
How to cite Brainstorm
Please cite the following open-access reference in your publications if you have used our software for data analyses: How to cite Brainstorm. It is also good offline reading to get an overview of the main features of the application.
Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011)
Brainstorm: A User-Friendly Application for MEG/EEG Analysis
Computational Intelligence and Neuroscience, vol. 2011, ID 879716
What you can do with Brainstorm
MEG/EEG recordings
Digitize the position of the EEG electrodes and the subject's head shape | link
Support for multiple modalities | MEG, EEG, sEEG, ECoG, NIRS, electrophysiology
Read data from the most popular file formats | link
Interactive access to data files in native formats | link
Import data in Matlab | link
Import and order data in a well-organized database | link
Review, edit and import event markers in continuous recordings | link
Automatic detection of well-defined artifacts: eye blinks, heartbeats | link
Artifact correction: Signal Space Projections (SSP)
Independent Component Analysis (ICA)
Detection of bad trials / bad channels
Baseline correction | link
Power spectrum density | link
Frequency filtering, resampling | link
Epoching | link
Averaging | link
Powerful and versatile visualization
Various time series displays | link
Data mapping on 2D or 3D surfaces | link
Generate slides and animations (export as contact sheets, snapshots, movies, ...)
Flexible montage editor | link
Channel selection and sensor clustering | link
MRI visualization and coregistration
Import individual MRI volumes and surfaces | link, FreeSurfer, BrainSuite, BrainVISA, CAT, CIVET
Deface MRI images | link
Normalize MRI to MNI space | link
Use anatomy templates | link
Warp templates to individual head surface | link
Automatic or interactive co-registration with the MEG/EEG coordinate system | link
Volume rendering (multiple display modes) | link
Anatomical atlases: surface parcelations and sub-cortical regions | link
Database: Keep your data organized
- Ordering of data by protocol, subject and condition/event
- Quick access to all the data in a study for efficient, batch processing
- Quick access to comparisons between subjects or conditions
Graphical batching tools
Apply the same process to many files in a few clicks | link
Automatic generation of scripts to perform full analysis | link
Flexible plug-in structure that makes the software easy to extend | link
Head modeling
MEG: Single sphere, overlapping spheres | link
EEG: Berg's three-layer sphere, Boundary Element Models (with OpenMEEG) and the Finite Element Models (with DUNEuro)
sEEG/ECoG: Boundary Element Models (with OpenMEEG) and the Finite Element Models (with DUNEuro)
- Interactive interface to define the best-fitting sphere
Source modeling
Estimation of noise statistics for improved source modeling | link
L2 Minimum-norm current estimates | link
Normalizations: dSPM, sLORETA, Z-score | link
- All models can be cortically-constrained or not, and with/without constrained orientations
Source estimation on cortical surface, MRI volume or sub-cortical atlases
Dipole scanning | link
Dipole fitting with FieldTrip | link
Import and display of Neuromag's Xfit and CTF's DipoleFit dipole models | link
Simulation of MEG/EEG recordings from source activity | link
Source display and analysis
Multiple options for surface and volume rendering of the source maps | link
- Re-projection of the sources in the MRI volume (from surface points to voxels)
Definition of regions of interest | link
Project the sources on a surface with higher or lower resolution | link
Project the sources on a group template | link
Surface or volume spatial smoothing | link
Time-frequency decompositions
Time-frequency analyses of sensor data and sources time series using Morlet wavelet, Fast Fourier Transform and Hilbert transform | link
- Define time and frequency scales of interest
- Multiple display modes available
Functional connectivity
Correlation, coherence, Granger causality, phase-locking value | link
Phase-amplitude coupling estimation | link
- Both at sensor and source levels
- Dynamic circle plots for representing dense and high-dimensional connectivity graphs
Representation of functional connectivity on anatomical fibers | link
Machine learning
Decoding / Multivariate pattern analysis with SVM or LDA | link
Group analysis
Registration of individual brains to a template | link
Parametric and non-parametric statistics | link
Standard group analysis pipeline | single subject, group, roadmaps
Guidelines for scripting the analysis of large datasets | link
Documentation and support
- Easy and automatic updates of the software
Detailed step-by-step tutorials for most common features
Active user forum supported by a large user community
Organization of training courses on demand
Supported file formats
EEG / Electrophysiology
Data structures of similar applications
Dipole models
Surface atlases
| MEG
fNIRS
Other recordings
Sensors locations
MRI volumes
Surface meshes
|
Development, release and distribution
Brainstorm follows a continuous development and release model. Brainstorm is updated on a rolling basis to ensure that users have access to the latest features, improvements and bug fixes as soon as they are ready. These updates are regularly published on the Brainstorm GitHub repository, and the version in the download page are updated everyday.
Updates can be obtained:
Automatically: at the Brainstorm startup, the user gets notified for updates and can download a new version is necessary.
Manually: this is be started within the GUI with the menu Update > Update Brainstorm
GitHub: for users and developers experienced in git and GitHub, latest Brainstorm source code can be retrieved from the Brainstorm GitHub repository.