3299
Comment:
|
6572
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
= Tutorials = == How to use those tutorials == 1. Go through all the tutorials in the section ''Getting started with Brainstorm''. In just a few hours, they will introduce you to most of the main features of the application. 1. Then read more specific tutorials, closer to your personal interests. 1. If you want a printed version of a page, click on the "print" link on the top right of the page. |
## page was renamed from Tutorials = Tutorials [old] = == Required background == These tutorial pages suppose you are comfortable with the basic concepts of MEG and EEG source imaging. If you're not, we engage you to read some background information, which will quickly help you getting up to speed with this field: |
Line 7: | Line 6: |
== Getting started with Brainstorm == * [[Tutorials/BstFolders|0. Brainstorm architecture]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/BstFolders#Brainstorm_folders|Brainstorm folders]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/BstFolders#Brainstorm_database_.28concept.29|Brainstorm database (concept)]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/BstFolders#Brainstorm_database_.28files.29|Brainstorm database (files)]] |
* A non-technical overview of MEG and EEG, with an emphasis on source modeling:<<BR>> [[http://www.canada-meg-consortium.org/EN/MegIntro|Canada MEG Consortium]] |
Line 13: | Line 8: |
* [[Tutorials/TutFirstSteps|1. First steps]] 1. Starting Brainstorm for the first time |
* Slides from a selection of educational courses:<<BR>>[[http://megcommunity.org/index.php?option=com_content&view=article&id=27&Itemid=13|megcommunity.org]] |
Line 16: | Line 10: |
1. Main interface window | * Reference books: * [[http://www.amazon.com/MEG-Introduction-Methods-Peter-Hansen/dp/0195307232/ref=sr_1_1?ie=UTF8&qid=1324419425&sr=8-1|MEG: An Introduction to Methods]]<<BR>>Editors: P Hansen, M Kringelbach, R Salmelin, ''Oxford University Press'', 2010, 448 pages |
Line 18: | Line 13: |
1. Create first protocol | * [[http://www.amazon.com/Oxford-Handbook-Neuroscience-Library-Psychology/dp/019534216X/ref=sr_1_3?s=books&ie=UTF8&qid=1324419480&sr=1-3|The Oxford Handbook of Social Neuroscience]]<<BR>>Editors: J Decety, JT Cacioppo, ''Oxford University Press'', 2011, 1128 pages<<BR>>A draft version of the MEG chapter by Sylvain Baillet can be found [[attachment:BailletMEGDraft.pdf|here]]. '' '' |
Line 20: | Line 15: |
1. Fiducials selection (MRI Viewer) | * [[http://www.ncbi.nlm.nih.gov/pubmed/23046981|Good practice for conducting and reporting MEG research]], Gross et al, Neuroimage, 2013 |
Line 22: | Line 17: |
1. Protocol exploration | * You can also ask us to come and organize a [[Training|training session]] at your institution, or [[http://www.bic.mni.mcgill.ca/ResearchLabsNeuroSPEED/HomePage|visit us]] to obtain training (McGill's Montreal Neurological Institute). |
Line 24: | Line 19: |
1. MRI visualization | Now you are well equipped to go through the software tutorial, '' Enjoy! '' |
Line 26: | Line 21: |
1. Surfaces visualization | == Get started == The easiest way to get started with Brainstorm is to follow carefully these introduction tutorials. In just a few hours, you will be introduced to the essential features of the application. You will find a report form at the end of each tutorial, please share your comments to help us improve the documentation and the software. To get a quick overview of the software interface, you can watch this [[Screenshots|introduction video]]. |
Line 28: | Line 24: |
1. Coordinates tab * [[Tutorials/TutImportAnatomy|2. Importing individual anatomy]] 1. Dataset description 1. Create protocol 1. Import MRI 1. Import surfaces 1. Downsample and merge surfaces 1. Check registration with MRI 1. Fix registration with MRI 1. What happened on the hard drive * [[Tutorials/TutImportRecordings|3. Importing recordings]] * [[Tutorials/TutExploreRecodings|4. Exploring the recordings]] * [[Tutorials/TutHeadModel|5. Computing a head model]] * [[Tutorials/TutNoiseCov|6. Computing a noise covariance matrix]] * [[Tutorials/TutSourceEstimation|7. Source estimation]] * [[Tutorials/TutScouts|8. Scouts: Cortical regions of interest]] * [[Tutorials/TutProcesses|9. Processes: Graphical batching interface]] * [[Tutorials/TutStat|10. Statistics]] * [[Tutorials/TutTimefreq|11. Time-frequency]] |
If you need a printed version of a page, click on the "print" link at the top-right corner of the page. However, note that these pages are updated with the software, and cannot be kept as long term reference documentation. === 12 easy steps through Brainstorm === 1. [[Tutorials/BstFolders|Brainstorm architecture]] ''[10 min] '' 1. [[Tutorials/TutFirstSteps|First steps]] ''[30 min]'' 1. [[Tutorials/TutImportAnatomy|Importing individual anatomy]] ''[30 min]'' 1. [[Tutorials/TutImportRecordings|Importing MEG recordings]] ''[30 min]'' 1. [[Tutorials/TutExploreRecodings|Exploring the recordings]] ''[60 min]'' 1. [[Tutorials/TutHeadModel|Head model]] ''[30 min]'' 1. [[Tutorials/TutNoiseCov|Noise covariance]] ''[30 min]'' 1. [[Tutorials/TutSourceEstimation|Source estimation]] ''[45 min]'' 1. [[Tutorials/TutScouts|Scouts]] ''[45 min]'' 1. [[Tutorials/TutProcesses|Graphical scripting]] ''[45 min]'' 1. [[Tutorials/TutStat|Statistics]] ''[30 min]'' 1. [[Tutorials/TutTimefreq|Time-frequency]] ''[1:30 hr''] === Processing continuous recordings === 1. [[Tutorials/TutRawViewer|Review continuous recordings and edit markers]] ''[2:00 hr]'' 1. [[Tutorials/TutRawSsp|Detect and remove artifacts]] ''[2:00 hr]'' 1. [[Tutorials/TutRawAvg|Epoching and averaging]] ''[1:30 hr]'' |
Line 49: | Line 46: |
=== Complete analysis of other datasets === 1. [[http://neuroimage.usc.edu/brainstorm/Tutorials/Epilepsy|EEG and epilepsy]] 1. [[http://neuroimage.usc.edu/brainstorm/Tutorials/Auditory|MEG auditory tutorial]] 1. [[http://neuroimage.usc.edu/brainstorm/Tutorials/Yokogawa|MEG median nerve (Yokogawa/KIT)]] 1. [[http://neuroimage.usc.edu/brainstorm/Tutorials/TutMindNeuromag|MEG median nerve (Elekta-Neuromag)]] 1. [[http://neuroimage.usc.edu/brainstorm/Tutorials/Resting|MEG resting state (CTF)]] 1. [[http://neuroimage.usc.edu/brainstorm/Tutorials/RatPac|Rat electrophysiology]] [Under construction] |
|
Line 51: | Line 57: |
1. [[Tutorials/SegBrainVisa|MRI segmentation with BrainVISA]] 1. [[Tutorials/SegBrainVisa|MRI segmentation]][[Tutorials/SegBrainVisa|with BrainSuite]] 1. [[Tutorials/SegBrainVisa|MRI segmentation]][[Tutorials/SegBrainVisa|with FreeSurfer]] 1. [[Tutorials/TutRefineReg|Refine registration using head points]] |
1. MRI segmentation: [[Tutorials/LabelFreeSurfer|FreeSurfer]], [[Tutorials/SegBrainSuite|BrainSuite]], [[Tutorials/SegBrainVisa|BrainVISA]], [[Tutorials/SegCIVET|CIVET]] |
Line 57: | Line 61: |
=== Recordings === 1. [[Tutorials/TutRawViewer|Review raw recordings and edit markers]] 1. [[Tutorials/TutMindNeuromag|Neuromag raw recordings]] |
1. [[Tutorials/CoregisterSubjects|Group studies: Subjects coregistration]] |
Line 61: | Line 63: |
=== Source estimation === 1. [[Tutorials/TutBem|BEM head model]] |
1. [[Tutorials/TutDigitize|Digitize EEG electrodes and head shape]] 1. [[Tutorials/TutRealtime|Real-time head positioning in the CTF MEG system]] === Graphical scripting === 1. [[SelectFiles|Selecting files in the database]] 1. [[Tutorials/TutRawScript|Full analysis with one script]] 1. [[Tutorials/TutUserProcess|How to write your own process]] === Source modeling === 1. [[Tutorials/TutBem|BEM with OpenMEEG]] |
Line 64: | Line 75: |
1. [[Tutorials/TutProject|Project sources on default anatomy]] 1. [[Tutorials/TutXfit|Import and visualize dipoles from Neuromag Xfit]] 1. [[Tutorials/TutClusters|Clusters of sensors]] |
1. [[Tutorials/TutDipScan|Computing and displaying dipoles]] 1. [[Tutorials/Beamformers|Beamforming methods]] [Under construction] 1. [[Tutorials/TutBEst|Maximum Entropy on the Mean (MEM)]] [Under construction] === Functional connectivity === 1. [[Tutorials/TutPac|Phase-amplitude coupling]] === Statistics === 1. [[ExportSpm8|Export volume source maps to SPM8 / SPM12]] 1. [[ExportSpm12|Export surface source maps to SPM12]] |
Line 69: | Line 90: |
1. [[Tutorials/TutScript|How to use Brainstorm without the GUI]] | |
Line 71: | Line 91: |
1. [[Tutorials/TutCompile|How to compile Brainstorm]] 1. [[Tutorials/TutUserProcess|How to write your own processes]] |
|
Line 74: | Line 93: |
1. [[Tutorials/WorkflowGuide|MEG analysis guidelines for McGill]] 1. [[Tutorials/SSPCookbook|Cleaning artifacts using SSP: examples]] 1. [[Tutorials/ArtifactDetect|Detecting bad segments in continuous recordings]] 1. [[Tutorials/MovementDetect|Detect subject movements]] 1. [[Tutorials/TutRealtime|Real-time head-tracking for adjusting head position]] 1. [[http://meg.aalip.jp/matlab/index.html|A tutorial in Japanese]] (click on the menu "Brainstorm") === Examples === 1. This video illustrates how Brainstorm can be used for studying amygdala activity:<<BR>>[[http://www.jove.com/video/50212/how-to-detect-amygdala-activity-with-magnetoencephalography-using?status=a52218k|How to Detect Amygdala Activity with Magnetoencephalography using Source Imaging]] <<BR>>Authors: Balderston NL, Schultz DH, Baillet S, Helmstetter FJ |
Tutorials [old]
Required background
These tutorial pages suppose you are comfortable with the basic concepts of MEG and EEG source imaging. If you're not, we engage you to read some background information, which will quickly help you getting up to speed with this field:
A non-technical overview of MEG and EEG, with an emphasis on source modeling:
Canada MEG ConsortiumSlides from a selection of educational courses:
megcommunity.org- Reference books:
MEG: An Introduction to Methods
Editors: P Hansen, M Kringelbach, R Salmelin, Oxford University Press, 2010, 448 pagesThe Oxford Handbook of Social Neuroscience
Editors: J Decety, JT Cacioppo, Oxford University Press, 2011, 1128 pages
A draft version of the MEG chapter by Sylvain Baillet can be found here.
Good practice for conducting and reporting MEG research, Gross et al, Neuroimage, 2013
You can also ask us to come and organize a training session at your institution, or visit us to obtain training (McGill's Montreal Neurological Institute).
Now you are well equipped to go through the software tutorial, Enjoy!
Get started
The easiest way to get started with Brainstorm is to follow carefully these introduction tutorials. In just a few hours, you will be introduced to the essential features of the application. You will find a report form at the end of each tutorial, please share your comments to help us improve the documentation and the software. To get a quick overview of the software interface, you can watch this introduction video.
If you need a printed version of a page, click on the "print" link at the top-right corner of the page. However, note that these pages are updated with the software, and cannot be kept as long term reference documentation.
12 easy steps through Brainstorm
?Brainstorm architecture [10 min]
?First steps [30 min]
?Importing individual anatomy [30 min]
?Importing MEG recordings [30 min]
?Exploring the recordings [60 min]
?Head model [30 min]
?Noise covariance [30 min]
?Source estimation [45 min]
?Scouts [45 min]
?Graphical scripting [45 min]
?Statistics [30 min]
?Time-frequency [1:30 hr]
Processing continuous recordings
?Review continuous recordings and edit markers [2:00 hr]
?Detect and remove artifacts [2:00 hr]
?Epoching and averaging [1:30 hr]
Advanced tutorials
Complete analysis of other datasets
Rat electrophysiology [Under construction]
Anatomy and registration
MRI segmentation: FreeSurfer, BrainSuite, BrainVISA, CIVET
Graphical scripting
Source modeling
Beamforming methods [Under construction]
Maximum Entropy on the Mean (MEM) [Under construction]
Functional connectivity
Statistics
Other useful how-to's
?MEG analysis guidelines for McGill
?Detecting bad segments in continuous recordings
A tutorial in Japanese (click on the menu "Brainstorm")
Examples
This video illustrates how Brainstorm can be used for studying amygdala activity:
How to Detect Amygdala Activity with Magnetoencephalography using Source Imaging
Authors: Balderston NL, Schultz DH, Baillet S, Helmstetter FJ