9652
Comment:
|
11680
|
Deletions are marked like this. | Additions are marked like this. |
Line 5: | Line 5: |
The easiest way to get started with Brainstorm is to read and follow carefully these introduction tutorials. The number between brackets represents the number of printed pages for each tutorial. All in [[Tutorials/AllIntroduction|one page]]. <<BR>>Some sections are still being edited or under review: [[Tutorials/Review|Editing process]]. | The easiest way to get started with Brainstorm is to read and follow carefully these introduction tutorials. The number between brackets represents the number of printed pages for each tutorial. All in [[Tutorials/AllIntroduction|one page]]. |
Line 63: | Line 63: |
<<HTML( )>>22. [[Tutorials/SourceEstimation|Source estimation]] <<HTML(<FONT color="#DDDDDD">)>>[28] <<HTML(</FONT>)>> [TODO] | <<HTML( )>>22. [[Tutorials/SourceEstimation|Source estimation]] <<HTML(<FONT color="#DDDDDD">)>>[28] <<HTML(</FONT>)>> |
Line 85: | Line 85: |
* [[Tutorials/VisualSingle|MEG visual: single subject (Elekta)]] * [[Tutorials/VisualGroup|MEG visual: group study (Elekta)]] |
* [[Tutorials/Epileptogenicity|SEEG epileptogenicity maps]] * [[https://neuroimage.usc.edu/brainstorm/Tutorials/ECoG|ECoG+sEEG epilepsy (BIDS)]] * [[Tutorials/VisualSingle|MEG visual: single subject (Elekta/BIDS)]] * [[Tutorials/VisualGroup|MEG visual: group study (Elekta/BIDS)]] |
Line 92: | Line 94: |
* [[Tutorials/RestingOmega|MEG resting state & OMEGA database (CTF)]] * [[Tutorials/HCP-MEG|MEG Human Connectome Project (4D)]] |
|
Line 95: | Line 99: |
* [[Tutorials/NIRSFingerTapping|NIRS finger tapping]] [TODO] | * [[Tutorials/NIRSFingerTapping|NIRS finger tapping]] |
Line 105: | Line 109: |
* [[Tutorials/LabelFreeSurfer|FreeSurfer]], [[Tutorials/SegBrainSuite|BrainSuite]], [[Tutorials/SegBrainVisa|BrainVISA]], [[Tutorials/SegCIVET|CIVET]] | * MRI segmentation: [[Tutorials/LabelFreeSurfer|FreeSurfer]], <<BR>>[[Tutorials/SegBrainSuite|BrainSuite]], [[Tutorials/SegBrainVisa|BrainVISA]], [[https://neuroimage.usc.edu/brainstorm/Tutorials/SegCAT12|CAT12]], [[Tutorials/SegCIVET|CIVET]] |
Line 107: | Line 112: |
* [[Tutorials/TutWarping|Warping the anatomy templates]] | |
Line 108: | Line 114: |
* [[Tutorials/TutWarping|Warping default anatomy]] [TODO] | |
Line 110: | Line 115: |
* [[Tutorials/TutRealtime|Real-time head positioning in the CTF MEG]] | * [[Tutorials/TutRealtime|Real-time head positioning (CTF MEG)]] * [[Tutorials/HeadMotion|Head motion detection (MEG)]] |
Line 114: | Line 120: |
* [[Tutorials/MontageEditor|Montage editor]] [TODO] | * [[Tutorials/MontageEditor|Montage editor]] |
Line 123: | Line 129: |
* [[Tutorials/Plotly|Export figures to Plotly]] '''Deprecated documentation''' * [[Tutorials/VisualSingleOrig|MEG visual: single subject (Elekta/Orig)]] * [[Tutorials/VisualGroupOrig|MEG visual: group study (Elekta/Orig)]] |
|
Line 128: | Line 141: |
* [[Tutorials/TutBem|BEM with OpenMEEG]] * [[Tutorials/TutVolSource|Volume source estimation]] [TODO] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/DeepAtlas|Deep cerebral structures]] [TODO] * [[Tutorials/TutDipScan|Dipoles: Scanning and importing]] [TODO] |
* [[Tutorials/TutBem|Realistic head model: BEM with OpenMEEG]] * [[https:///Duneuro|Realistic head model: FEM with DUNEuro]] * [[Tutorials/TutVolSource|Volume source estimation]] * [[http://neuroimage.usc.edu/brainstorm/Tutorials/DeepAtlas|Deep cerebral structures]] * [[Tutorials/TutDipScan|Dipoles: Scanning and displaying]] |
Line 134: | Line 148: |
* [[Tutorials/Beamformers|Beamforming methods]] [TODO] '''Advanced processing''' * [[Tutorials/TutUserProcess|How to write your own process]] [TODO] * [[Tutorials/Decoding|Decoding conditions (MVPA)]] * [[Tutorials/MicrostatesCena|Microstate segmentation with CENA]] * [[Tutorials/TutPac|Phase-amplitude coupling: Method]] [TODO] * [[Tutorials/Resting|Phase-amplitude coupling: Example]] [TODO] |
* [[Tutorials/Beamformers|Other beamforming methods]] '''Signal processing''' * [[Tutorials/Decoding|Machine learning: Decoding / MVPA]] * [[Tutorials/TutPac|Phase-amplitude coupling: Method]] * [[Tutorials/Resting|Phase-amplitude coupling: Example]] * [[Tutorials/PLS|Partial Least Squares (PLS)]] |
Line 144: | Line 158: |
* [[Tutorials/FiberConnectivity|Virtual fibers for connectivity]] * [[MnePython|Using MNE-Python from Brainstorm]] * [[Tutorials/EZFingerprint|Epileptogenic Zone Fingerprint]] '''Scripting''' * [[Tutorials/TutUserProcess|How to write your own process]] |
|
Line 146: | Line 168: |
<<HTML(</TD></TR><TR><TD colspan=2>)>> |
* [[ExportBids|Export raw data to BIDS format]] <<HTML(</TD></TR></TABLE>)>> == Invasive neurophysiology == Learn how to use Brainstorm for studying single & multiunit activity. <<HTML(<TABLE class="tuto-table"><TR><TD width=350>)>> * [[https://neuroimage.usc.edu/brainstorm/e-phys/Introduction|Importing raw e-phys data]] * [[https://neuroimage.usc.edu/brainstorm/e-phys/SpikeSorting#Supervised_Spike_Sorting|Spike-sorting]] * [[https://neuroimage.usc.edu/brainstorm/e-phys/ConvertToBrainstormEvents|Using external spike-sorters]] * [[https://neuroimage.usc.edu/brainstorm/e-phys/RawToLFP|Converting raw data to LFP]] <<HTML(</TD><TD>)>> * [[https://neuroimage.usc.edu/brainstorm/e-phys/functions|Tuning Curves]] * [[https://neuroimage.usc.edu/brainstorm/e-phys/functions#Noise_Correlation|Noise Correlation]] * [[https://neuroimage.usc.edu/brainstorm/e-phys/functions#Spike_Field_Coherence|Spike Field Coherence]] * [[https://neuroimage.usc.edu/brainstorm/e-phys/functions#Raster_Plots|Raster Plots]] * [[https://neuroimage.usc.edu/brainstorm/e-phys/functions#Spike_triggered_Average|Spike Triggered Average]] |
Line 152: | Line 196: |
These tutorial pages suppose you are comfortable with the basic concepts of MEG and EEG source imaging. If you're not, we engage you to read some background information, which will quickly help you getting up to speed with this field: * [[http://www.canada-meg-consortium.org/EN/MegIntro|Canada MEG consortium: Basics of MEG]]<<BR>>A non-technical overview of MEG and EEG, with an emphasis on source modeling. |
These tutorial pages suppose you are comfortable with the basic concepts of MEG and EEG source imaging. If you're not, we encourage you to read some background information, which will quickly help you getting up to speed with this field: * [[http://rdcu.be/pydB|Nature Neuroscience review paper on MEG for Human Electrophysiology and Imaging]] (Baillet S, 2017) * [[https://www.mcw.edu/Magnetoencephalography-Program-MEG/About-MEG.htm|Introduction to MEG (Medical College of Wisconsin)]] <<BR>>A non-technical overview of MEG and EEG, with an emphasis on source modeling. |
Line 162: | Line 207: |
* Slides from a selection of educational courses: [[http://megcommunity.org/index.php?option=com_content&view=article&id=27&Itemid=13|megcommunity.org]] | * Slides from a selection of educational courses: [[http://megcommunity.org/education/teaching-slides|megcommunity.org]] |
Tutorials
These tutorial pages suppose you are comfortable with the basic concepts of MEG/EEG analysis and source imaging. If you're not, we encourage you to read some background literature.
To get a quick overview of the software interface, you can watch this introduction video.
If you are looking for the old tutorials, they are still available ?here.
Get started
The easiest way to get started with Brainstorm is to read and follow carefully these introduction tutorials. The number between brackets represents the number of printed pages for each tutorial. All in one page.
Starting a new study 1. Create a new protocol [9] 2. Import the subject anatomy [8] 3. Explore the anatomy [13] Reviewing 4. Channel file / MRI registration [11] 5. Continuous recordings [9] 6. Multiple windows [5] 7. Event markers [10] Pre-processing 8. Stimulation delays [9] 9. Select files / Run processes [11] 10. Power spectrum / Frequency filters [15] 11. Bad channels [6] 12. Artifact detection [8] 13. Artifact cleaning with SSP [16] 14. Additional bad segments [7] | Epoching and averaging 15. Import epochs [9] 16. Average response [7] 17. Visual exploration [10] 18. Colormaps [5] 19. Clusters of sensors [4] Source modeling 20. Head model [9] 21. Noise/data covariance [7] 22. Source estimation [28] 23. Scouts [17] Advanced processing 24. Time-frequency [33] 25. Difference [13] 26. Statistics [30] 27. Workflows [10] 28. Scripting [31] |
Other analysis scenarios
Advanced tutorials
Anatomy and registration
Recordings Software Deprecated documentation | Source modeling Signal processing
Scripting |
Invasive neurophysiology
Learn how to use Brainstorm for studying single & multiunit activity.
Background readings
These tutorial pages suppose you are comfortable with the basic concepts of MEG and EEG source imaging. If you're not, we encourage you to read some background information, which will quickly help you getting up to speed with this field:
Nature Neuroscience review paper on MEG for Human Electrophysiology and Imaging (Baillet S, 2017)
Introduction to MEG (Medical College of Wisconsin)
A non-technical overview of MEG and EEG, with an emphasis on source modeling.MEG: An Introduction to Methods
Editors: P Hansen, M Kringelbach, R Salmelin, Oxford University Press, 2010, 448 pages.The Oxford Handbook of Social Neuroscience
Editors: J Decety, JT Cacioppo, Oxford University Press, 2011, 1128 pages
A draft version of the MEG chapter by Sylvain Baillet can be found here.Good practice for conducting and reporting MEG research, Gross et al, Neuroimage, 2013.
Slides from a selection of educational courses: megcommunity.org
We can also come and organize a training session at your institution, or visit us at the MNI.
Now you are well equipped to go through the software tutorial, Enjoy!